Do you want to publish a course? Click here

Bayesian surface photometry analysis for early-type galaxies

84   0   0.0 ( 0 )
 Added by D. H. Stalder
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the application of Bayesian image analysis to infer the properties of an SDSS early-type galaxy sample including AGN. We use GALPHAT (Yoon et al. 2010) with a Bayes-factor model comparison to photometrically infer an AGN population and verify this using spectroscopic signatures. Our combined posterior sample for the SDSS sample reveals distinct low and high concentration modes after the point-source flux is modeled. This suggests that ETG parameters are intrinsically bimodal. The bimodal signature was weak when analyzed by GALFIT (Peng et al. 2002, 2010). This led us to create several ensembles of synthetic images to investigate the bias of inferred structural parameters and compare with GALFIT. GALPHAT inferences are less biased, especially for high-concentration profiles: GALPHAT Sersic index $n$, $r_{e}$ and MAG deviate from the true values by $6%$, $7.6%$ and $-0.03 ,mathrm{mag}$, respectively, while GALFIT deviates by $15%$, $22%$ and $-0.09$, mag, respectively. In addition, we explore the reliability for the photometric detection of AGN using Bayes factors. For our SDSS sample with $r_{e}ge 7.92,$arcsec, we correctly identify central point sources with $mathrm{Mag_{PS}}-mathrm{Mag_{Sersic}}le 5$ for $nle6$ and $mathrm{Mag_{PS}}-mathrm{Mag_{Sersic}}le 3$ for $n>6$. The magnitude range increases and classification error decreases with increasing resolution, suggesting that this approach will excel for upcoming high-resolution surveys. Future work will extend this to models that test hypotheses of galaxy evolution through the cosmic time.



rate research

Read More

Isolated early-type galaxies (iETGs) are evolving in unusually poor environments for this morphological family, which is typical of cluster inhabitants. We investigate the mechanisms driving the evolution of these galaxies. Several studies indicate that interactions, accretions, and merging episodes leave their signature on the galaxy structure, from the nucleus down to the faint outskirts. We focus on revealing such signatures, if any, in a sample of iETGs, and we quantitatively revise their galaxy classification. We observed 20 (out of 104) iETGs, selected from the AMIGA catalog, with the 4KCCD camera at the VATT in the SDSS g and r bands. These are the deepest observations of a sample of iETGs so far. The analysis was performed using the AIDA package, providing PSF-corrected 2D surface photometry up to the galaxy outskirts. The package provides a model of the 2D galaxy light distribution, which after model subtraction enhances the fine and peculiar structures in the residual image of the galaxies. Our re-classification suggests that the sample is composed of bona fide ETGs spanning from ellipticals to late-S0s galaxies. Most of the surface brightness profiles are best fitted with a bulge plus disc model, suggesting the presence of an underlying disc structure. The residuals obtained after the model subtraction show the nearly ubiquitous presence of fine structures, such as shells, stellar fans, rings, and tails. Shell systems are revealed in about 60% of these galaxies. Because interaction, accretion, and merging events are widely interpreted as the origin of the fans, ripples, shells and tails in galaxies, we suggest that most of these iETGs have experienced such events. Because they are isolated (after 2-3 Gyr), these galaxies are the cleanest environment in which to study phenomena connected with events like these.
We have carried out surface photometry and an isophotal analysis for a sample of 25 early-type dwarf (dE and dS0) galaxies in the Virgo cluster based on CCD images taken at the VLT with FORS1 and FORS2. For each galaxy we present $B$ and $R$-band surface brightness profiles, as well as the radial colour ($B-R$) profile. We give total apparent $BR$ magnitudes, effective radii, effective surface brightnesses and total colour indices. The light profiles have been fitted with Sersic models and the corresponding parameters are compared to the ones for other classes of objects. The observed profiles of the brightest cluster dwarfs show significant deviations from a simple Sersic model, indicating that there is more inner structure than just a nucleus. In addition, we find a relation between the effective surface brightness, at a given luminosity, and the strength of the offset of the galaxys nucleus with respect to the center of the isophotes. Dwarfs with large nuclear offsets also tend to have stronger isophotal twists. In sum, our findings suggest the presence of substructure in most, and preferentially in the less compact, bright early-type dwarfs. The physical (dynamical) meaning of this has yet to be explored. (abridged)
We make use of the images from the Sloan Digital Sky Survey Stripe 82 to present an analysis of r band surface brightness profiles and radial color gradients (g - r, u - r) in 111 nearby early-type galaxies (ETGs). With Stripe 82 images, we are able to pay special attentions to the low-surface-brightness areas (LSB areas) of the galaxies. The LSB areas make a difference to the Sersic fittings and concentration indices, making both the indices less than the typical values for ETGs. There are about 60% negative color gradients (red-core) within 1.5Re , much more than the approximately 10% positive ones (blue-core) within the same radius. However, taking into account of the LSB areas, we find that the color gradients are not necessarily monotonic: about one third of the red-core (or blue-core) galaxies have positive (or negative) color gradients in the outer areas. So LSB areas not only make ETGs Sersic profiles deviate from de Vaucouleur ones and shift to the disk end, but also reveal that quite a number of ETGs have opposite color gradients in inner and outer areas. These outcomes remind us the necessity of double-Sersic fitting. These LSB phenomena may be interpreted by mergers and thus different metallicity in the outer areas. Isophotal parameters are also discussed briefly in this paper: more disky nearby ETGs are spotted than boxy ones.
We present deep B- and R-band surface photometry for a sample of 21 galaxies with morphological types between S0 and Sab. We present radial profiles of surface brightness, colour, ellipticity, position angle and deviations of axisymmetry for all galaxies, as well as isophotal and effective radii and total magnitudes. We have decomposed the images into contributions from a spheroidal bulge and a flat disk, using an interactive, 2D decomposition technique. We study in detail the relations between various bulge and disk parameters. In particular, we find that the bulges of our galaxies have surface brightness profiles ranging from exponential to De Vaucouleurs, with the average value of the Sersic shape parameter n being 2.5. In agreement with previous studies, we find that the shape of the bulge intensity distribution depends on luminosity, with the more luminous bulges having more centrally peaked light profiles. By comparing the ellipticity of the isophotes in the bulges to those in the outer, disk dominated regions, we are able to derive the intrinsic axis ratio q_b of the bulges. The average axis ratio is 0.55, with an rms spread of 0.12. None of the bulges in our sample is spherical, whereas in some cases, the bulges can be as flat as q_b = 0.3 - 0.4. The bulge flattening seems to be weakly coupled to luminosity, more luminous bulges being on average slightly more flattened than their lower-luminosity counterparts. Our finding that most bulges are significantly flattened and have an intensity profile shallower than R^{1/4} suggests that `pseudobulges, formed from disk material by secular processes, do not only occur in late-type spiral galaxies, but are a common feature in early-type disk galaxies as well. (abridged)
68 - V. Korol 2016
Accretion onto central massive black holes in galaxies is often modelled with the Bondi solution. In this paper we study a generalization of the classical Bondi accretion theory, considering the additional effects of the gravitational potential of the host galaxy, and of electron scattering in the optically thin limit. We provide a general analysis of the bias in the estimates of the Bondi radius and mass accretion rate, when adopting as fiducial values for the density and temperature at infinity the values of these quantities measured at finite distance from the central black hole. We also give general formulae to compute the correction terms of the critical accretion parameter in relevant asymptotic regimes. A full analytical discussion is presented in the case of an Hernquist galaxy, when the problem reduces to the discussion of a cubic equation, therefore allowing for more than one critical point in the accretion structure. The results are useful for observational works (especially in the case of low-luminosity systems), as well as for numerical simulations, where accretion rates are usually defined in terms of the gas properties near the
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا