Do you want to publish a course? Click here

Asteroseismic Stellar Modelling with AIMS

88   0   0.0 ( 0 )
 Added by Daniel Reese
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The goal of AIMS (Asteroseismic Inference on a Massive Scale) is to estimate stellar parameters and credible intervals/error bars in a Bayesian manner from a set of asteroseismic frequency data and so-called classical constraints. To achieve reliable parameter estimates and computational efficiency, it searches through a grid of pre-computed models using an MCMC algorithm -- interpolation within the grid of models is performed by first tessellating the grid using a Delaunay triangulation and then doing a linear barycentric interpolation on matching simplexes. Inputs for the modelling consist of individual frequencies from peak-bagging, which can be complemented with classical spectroscopic constraints. AIMS is mostly written in Python with a modular structure to facilitate contributions from the community. Only a few computationally intensive parts have been rewritten in Fortran in order to speed up calculations.



rate research

Read More

A key aspect in the determination of stellar properties is the comparison of observational constraints with predictions from stellar models. Asteroseismic Inference on a Massive Scale (AIMS) is an open source code that uses Bayesian statistics and a Markov Chain Monte Carlo approach to find a representative set of models that reproduce a given set of classical and asteroseismic constraints. These models are obtained by interpolation on a pre-calculated grid, thereby increasing computational efficiency. We test the accuracy of the different operational modes within AIMS for grids of stellar models computed with the Li`ege stellar evolution code (main sequence and red giants) and compare the results to those from another asteroseismic analysis pipeline, PARAM. Moreover, using artificial inputs generated from models within the grid (assuming the models to be correct), we focus on the impact on the precision of the code when considering different combinations of observational constraints (individual mode frequencies, period spacings, parallaxes, photospheric constraints,...). Our tests show the absolute limitations of precision on parameter inferences using synthetic data with AIMS, and the consistency of the code with expected parameter uncertainty distributions. Interpolation testing highlights the significance of the underlying physics to the analysis performance of AIMS and provides caution as to the upper limits in parameter step size. All tests demonstrate the flexibility and capability of AIMS as an analysis tool and its potential to perform accurate ensemble analysis with current and future asteroseismic data yields.
62 - Nuno Moedas , Benard Nsamba , 2020
Despite the fact that the initial helium abundance is an essential ingredient in modelling solar-type stars, its abundance in these stars remains a poorly constrained observational property. This is because the effective temperature in these stars is not high enough to allow helium ionization, not allowing any conclusions on its abundance when spectroscopic techniques are employed. To this end, stellar modellers resort to estimating the initial helium abundance via a semi-empirical helium-to-heavy element ratio, anchored to the the standard Big Bang nucleosynthesis value. Depending on the choice of solar composition used in stellar model computations, the helium-to-heavy element ratio, ($Delta Y/Delta Z$) is found to vary between 1 and 3. In this study, we use the Kepler LEGACY stellar sample, for which precise seismic data is available, and explore the systematic uncertainties on the inferred stellar parameters (radius, mass, and age) arising from adopting different values of $Delta Y/Delta Z$, specifically, 1.4 and 2.0. The stellar grid constructed with a higher $Delta Y / Delta Z$ value yields lower radius and mass estimates. We found systematic uncertainties of 1.1 per cent, 2.6 per cent, and 13.1 per cent on radius, mass, and ages, respectively.
In this work we present the solution of the stellar spot problem using the Kelvin-Stokes theorem. Our result is applicable for any given location and dimension of the spots on the stellar surface. We present explicitely the result up to the second degree in the limb darkening law. This technique can be used to calculate very efficiently mutual photometric effects produced by eclipsing bodies occulting stellar spots and to construct complex spot shapes.
The detection and analysis of oscillations in binary star systems is critical in understanding stellar structure and evolution. This is partly because such systems have the same initial chemical composition and age. Solar-like oscillations have been detected by Kepler in both components of the asteroseismic binary HD 176465. We present an independent modelling of each star in this binary system. Stellar models generated using MESA (Modules for Experiments in Stellar Astrophysics) were fitted to both the observed individual frequencies and complementary spectroscopic parameters. The individual theoretical oscillation frequencies for the corresponding stellar models were obtained using GYRE as the pulsation code. A Bayesian approach was applied to find the probability distribution functions of the stellar parameters using AIMS (Asteroseismic Inference on a Massive Scale) as the optimisation code. The ages of HD 176465 A and HD 176465 B were found to be 2.81 $pm$ 0.48 Gyr and 2.52 $pm$ 0.80 Gyr, respectively. These results are in agreement when compared to previous studies carried out using other asteroseismic modelling techniques and gyrochronology.
Stellar mergers are important processes in stellar evolution, dynamics, and transient science. However, it is difficult to identify merger remnant stars because they cannot easily be distinguished from single stars based on their surface properties. We demonstrate that merger remnants can potentially be identified through asteroseismology of red giant stars using measurements of the gravity mode period spacing together with the asteroseismic mass. For mergers that occur after the formation of a degenerate core, remnant stars have over-massive envelopes relative to their cores, which is manifested asteroseismically by a g~mode period spacing smaller than expected for the stars mass. Remnants of mergers which occur when the primary is still on the main sequence or whose total mass is less than $approx! 2 , M_odot$ are much harder to distinguish from single stars. Using the red giant asteroseismic catalogs of Vrard et al. 2016 and Yu et al. 2018, we identify $24$ promising candidates for merger remnant stars. In some cases, merger remnants could also be detectable using only their temperature, luminosity, and asteroseismic mass, a technique that could be applied to a larger population of red giants without a reliable period spacing measurement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا