Do you want to publish a course? Click here

Dimensional Deception from Noncommutative Tori: An alternative to Horava-Lifschitz

128   0   0.0 ( 0 )
 Added by Fedele Lizzi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dimensional aspect of the geometry of quantum spaces. Introducing a physically motivated notion of the scaling dimension, we study in detail the model based on a fuzzy torus. We show that for a natural choice of a deformed Laplace operator, this model demonstrates quite non-trivial behaviour: the scaling dimension flows from 2 in IR to 1 in UV. Unlike another model with the similar property, the so-called Horava-Lifshitz model, our construction does not have any preferred direction. The dimension flow is rather achieved by a rearrangement of the degrees of freedom. In this respect the number of dimensions is deceptive. Some physical consequences are discussed.



rate research

Read More

Horava gravity breaks Lorentz symmetry by introducing a dynamical timelike scalar field (the khronon), which can be used as a preferred time coordinate (thus selecting a preferred space-time foliation). Adopting the khronon as the time coordinate, the theory is invariant only under time reparametrizations and spatial diffeomorphisms. In the infrared limit, this theory is sometimes referred to as khronometric theory. Here, we explicitly construct a generalization of khronometric theory, which avoids the propagation of Ostrogradski modes as a result of a suitable degeneracy condition (although stability of the latter under radiative corrections remains an open question). While this new theory does not have a general-relativistic limit and does not yield a Friedmann-Robertson-Walker-like cosmology on large scales, it still passes, for suitable choices of its coupling constants, local tests on Earth and in the solar system, as well as gravitational-wave tests. We also comment on the possible usefulness of this theory as a toy model of quantum gravity, as it could be completed in the ultraviolet into a degenerate Horava gravity theory that could be perturbatively renormalizable without imposing any projectability condition.
A spinless covariant field $phi$ on Minkowski spacetime $M^{d+1}$ obeys the relation $U(a,Lambda)phi(x)U(a,Lambda)^{-1}=phi(Lambda x+a)$ where $(a,Lambda)$ is an element of the Poincare group $Pg$ and $U:(a,Lambda)to U(a,Lambda)$ is its unitary representation on quantum vector states. It expresses the fact that Poincare transformations are being unitary implemented. It has a classical analogy where field covariance shows that Poincare transformations are canonically implemented. Covariance is self-reproducing: products of covariant fields are covariant. We recall these properties and use them to formulate the notion of covariant quantum fields on noncommutative spacetimes. In this way all our earlier results on dressing, statistics, etc. for Moyal spacetimes are derived transparently. For the Voros algebra, covariance and the *-operation are in conflict so that there are no covariant Voros fields compatible with *, a result we found earlier. The notion of Drinfeld twist underlying much of the preceding discussion is extended to discrete abelian and nonabelian groups such as the mapping class groups of topological geons. For twists involving nonabelian groups the emergent spacetimes are nonassociative.
In this paper, we further develop the analysis started in an earlier paper on the inequivalence of certain quantum field theories on noncommutative spacetimes constructed using twisted fields. The issue is of physical importance. Thus it is well known that the commutation relations among spacetime coordinates, which define a noncommutative spacetime, do not constrain the deformation induced on the algebra of functions uniquely. Such deformations are all mathematically equivalent in a very precise sense. Here we show how this freedom at the level of deformations of the algebra of functions can fail on the quantum field theory side. In particular, quantum field theory on the Wick-Voros and Moyal planes are shown to be inequivalent in a few different ways. Thus quantum field theory calculations on these planes will lead to different physics even though the classical theories are equivalent. This result is reminiscent of chiral anomaly in gauge theories and has obvious physical consequences. The construction of quantum field theories on the Wick-Voros plane has new features not encountered for quantum field theories on the Moyal plane. In fact it seems impossible to construct a quantum field theory on the Wick-Voros plane which satisfies all the properties needed of field theories on noncommutative spaces. The Moyal twist seems to have unique features which make it a preferred choice for the construction of a quantum field theory on a noncommutative spacetime.
58 - T. Krajewski , M. Schnabl 2001
We construct exact solitons on noncommutative tori for the type of actions arising from open string field theory. Given any projector that describes an extremum of the tachyon potential, we interpret the remaining gauge degrees of freedom as a gauge theory on the projective module determined by the tachyon. Whenever this module admits a constant curvature connection, it solves exactly the equations of motion of the effective string field theory. We describe in detail such a construction on the noncommutative tori. Whereas our exact solution relies on the coupling to a gauge theory, we comment on the construction of approximate solutions in the absence of gauge fields.
167 - S. Fabi , B. Harms , A. Stern 2008
Upon applying Chamseddines noncommutative deformation of gravity we obtain the leading order noncommutative corrections to the Robertson-Walker metric tensor. We get an isotropic inhomogeneous metric tensor for a certain choice of the noncommutativity parameters. Moreover, the singularity of the commutative metric at $t=0$ is replaced by a more involved space-time structure in the noncommutative theory. In a toy model we construct a scenario where there is no singularity at $t=0$ at leading order in the noncommutativity parameter. Although singularities may still be present for nonzero $t$, they need not be the source of all time-like geodesics and the result resembles a bouncing cosmology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا