Do you want to publish a course? Click here

Reaction-diffusion on the fully-connected lattice: $A+Arightarrow A$

90   0   0.0 ( 0 )
 Added by Loic Turban
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Diffusion-coagulation can be simply described by a dynamic where particles perform a random walk on a lattice and coalesce with probability unity when meeting on the same site. Such processes display non-equilibrium properties with strong fluctuations in low dimensions. In this work we study this problem on the fully-connected lattice, an infinite-dimensional system in the thermodynamic limit, for which mean-field behaviour is expected. Exact expressions for the particle density distribution at a given time and survival time distribution for a given number of particles are obtained. In particular we show that the time needed to reach a finite number of surviving particles (vanishing density in the scaling limit) displays strong fluctuations and extreme value statistics, characterized by a universal class of non-Gaussian distributions with singular behaviour.



rate research

Read More

128 - L. Turban 2015
We consider a random walk on the fully-connected lattice with $N$ sites and study the time evolution of the number of distinct sites $s$ visited by the walker on a subset with $n$ sites. A record value $v$ is obtained for $s$ at a record time $t$ when the walker visits a site of the subset for the first time. The record time $t$ is a partial covering time when $v<n$ and a total covering time when $v=n$. The probability distributions for the number of records $s$, the record value $v$ and the record (covering) time $t$, involving $r$-Stirling numbers, are obtained using generating function techniques. The mean values, variances and skewnesses are deduced from the generating functions. In the scaling limit the probability distributions for $s$ and $v$ lead to the same Gaussian density. The fluctuations of the record time $t$ are also Gaussian at partial covering, when $n-v={mathrm O}(n)$. They are distributed according to the type-I Gumbel extreme-value distribution at total covering, when $v=n$. A discrete sequence of generalized Gumbel distributions, indexed by $n-v$, is obtained at almost total covering, when $n-v={mathrm O}(1)$. These generalized Gumbel distributions are crossing over to the Gaussian distribution when $n-v$ increases.
82 - Sumedha , Mustansir Barma 2021
We use large deviation theory to obtain the free energy of the XY model on a fully connected graph on each site of which there is a randomly oriented field of magnitude $h$. The phase diagram is obtained for two symmetric distributions of the random orientations: (a) a uniform distribution and (b) a distribution with cubic symmetry. In both cases, the ordered state reflects the symmetry of the underlying disorder distribution. The phase boundary has a multicritical point which separates a locus of continuous transitions (for small values of $h$) from a locus of first order transitions (for large $h$). The free energy is a function of a single variable in case (a) and a function of two variables in case (b), leading to different characters of the multicritical points in the two cases.
126 - L. Turban 2014
The probability distribution of the number $s$ of distinct sites visited up to time $t$ by a random walk on the fully-connected lattice with $N$ sites is first obtained by solving the eigenvalue problem associated with the discrete master equation. Then, using generating function techniques, we compute the joint probability distribution of $s$ and $r$, where $r$ is the number of sites visited only once up to time $t$. Mean values, variances and covariance are deduced from the generating functions and their finite-size-scaling behaviour is studied. Introducing properly centered and scaled variables $u$ and $v$ for $r$ and $s$ and working in the scaling limit ($ttoinfty$, $Ntoinfty$ with $w=t/N$ fixed) the joint probability density of $u$ and $v$ is shown to be a bivariate Gaussian density. It follows that the fluctuations of $r$ and $s$ around their mean values in a finite-size system are Gaussian in the scaling limit. The same type of finite-size scaling is expected to hold on periodic lattices above the critical dimension $d_{rm c}=2$.
Starting from our recent chemical master equation derivation of the model of an autocatalytic reaction-diffusion chemical system with reactions $U+2V {stackrel {lambda_0}{rightarrow}}~ 3 V;$ and $V {stackrel {mu}{rightarrow}}~P$, $U {stackrel { u}{rightarrow}}~ Q$, we determine the effects of intrinsic noise on the momentum-space behavior of its kinetic parameters and chemical concentrations. We demonstrate that the intrinsic noise induces $n rightarrow n$ molecular interaction processes with $n geq 4$, where $n$ is the number of molecules participating of type $U$ or $V$. The momentum dependences of the reaction rates are driven by the fact that the autocatalytic reaction (inelastic scattering) is renormalized through the existence of an arbitrary number of intermediate elastic scatterings, which can also be interpreted as the creation and subsequent decay of a three body composite state $sigma = phi_u phi_v^2$, where $phi_i$ corresponds to the fields representing the densities of $U$ and $V$. Finally, we discuss the difference between representing $sigma$ as a composite or an elementary particle (molecule) with its own kinetic parameters. In one dimension we find that while they show markedly different behavior in the short spatio-temporal scale, high momentum (UV) limit, they are formally equivalent in the large spatio-temporal scale, low momentum (IR) regime. On the other hand in two dimensions and greater, due to the effects of fluctuations, there is no way to experimentally distinguish between a fundamental and composite $sigma$. Thus in this regime $sigma$ behave as an entity unto itself suggesting that it can be effectively treated as an independent chemical species.
Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domain that is evolving. The model equations, which have been derived from generalized continuous time random walks, can incorporate complexities such as subdiffusive transport and inhomogeneous domain stretching and shrinking. A method for constructing analytic expressions for short time moments of the position of the particles is developed and moments calculated from this approach are shown to compare favourably with results from random walk simulations and numerical integration of the reaction transport equation. The results show the important role played by the initial condition. In particular, it strongly affects the time dependence of the moments in the short time regime by introducing additional drift and diffusion terms. We also discuss how our reaction transport equation could be applied to study the spreading of a population on an evolving interface.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا