Do you want to publish a course? Click here

Testing the photon-number statistics of a quantum key distribution light source

77   0   0.0 ( 0 )
 Added by Marco Lucamarini
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A commonly held tenet is that lasers well above threshold emit photons in a coherent state, which follow a Poissonian statistics when measured in photon number. This feature is often exploited to build quantum-based random number generators or to derive the secure key rate of quantum key distribution systems. Hence the photon number distribution of the light source can directly impact the randomness and the security distilled from such devices. Here, we propose a method based on measuring correlation functions to experimentally characterise a light sources photon statistics and use it in the estimation of a quantum key distribution systems key rate. This promises to be a useful tool for the certification of quantum-related technologies.



rate research

Read More

We develop an improvement to the weak laser pulse BB84 scheme for quantum key distribution, which utilizes entanglement to improve the security of the scheme and enhance its resilience to the photon-number-splitting attack. This protocol relies on the non-commutation of photon phase and number to detect an eavesdropper performing quantum non-demolition measurement on number. The potential advantages and disadvantages of this scheme are compared to the coherent decoy state protocol.
Deterministic solid-state quantum light sources are key building blocks in photonic quantum technologies. While several proof-of-principle experiments of quantum communication using such sources have been realized, all of them required bulky setups. Here, we evaluate for the first time the performance of a compact and stand-alone fiber-coupled single-photon source emitting in the telecom O-band ($1321,$nm) for its application in quantum key distribution (QKD). For this purpose, we developed a compact 19 rack module including a deterministically fiber-coupled quantum dot single-photon source integrated into a Stirling cryocooler, a pulsed diode laser for driving the quantum dot, and a fiber-based spectral filter. We further employed this compact quantum light source in a QKD testbed designed for polarization coding via the BB84 protocol resulting in $g^{(2)}(0) = 0.10pm0.01$ and a raw key rate of up to $(4.72pm0.13),$kHz using an external laser for excitation. In this setting we investigate the achievable performance expected in full implementations of QKD. Using 2D temporal filtering on receiver side, we evaluate optimal parameter settings for different QKD transmission scenarios taking also finite key size effects into account. Using optimized parameter sets for the temporal acceptance time window, we predict a maximal tolerable loss of $23.19,$dB. Finally, we compare our results to previous QKD systems using quantum dot single-photon sources. Our study represents an important step forward in the development of fiber-based quantum-secured communication networks exploiting sub-Poissonian quantum light sources.
The security of quantum communication using a weak coherent source requires an accurate knowledge of the sources mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to deviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD, we model both a strong attack using technology possible in principle, and a realistic attack bounded by todays technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantiques commercial QKD system Clavis2. We scrutinize this implementation for security problems, and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.
Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation is assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key effects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be secure in practice. Here, we perform an experiment that for the first time shows secure QKD with imperfect state preparations over long distances and achieves rigorous finite-key security bounds for decoy-state QKD against coherent attacks in the universally composable framework. We quantify the source flaws experimentally and demonstrate a QKD implementation that is tolerant to channel loss despite the source flaws. Our implementation considers more real-world problems than most previous experiments and our theory can be applied to general QKD systems. These features constitute a step towards secure QKD with imperfect devices.
We studied intensity fluctuations of a single photon source relying on the pulsed excitation of the fluorescence of a single molecule at room temperature. We directly measured the Mandel parameter Q(T) over 4 orders of magnitude of observation timescale T, by recording every photocount. On timescale of a few excitation periods, subpoissonian statistics is clearly observed and the probablility of two-photons events is 10 times smaller than Poissonian pulses. On longer times, blinking in the fluorescence, due to the molecular triplet state, produces an excess of noise.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا