Do you want to publish a course? Click here

Dynamics influencing ordering of a s=3 Ising antiferromagnetic on a triangular lattice

168   0   0.0 ( 0 )
 Added by Gillian Gehring
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Antiferromagnetically coupled Ising s =3 spins on a triangular lattice are very close to ordering at zero temperature. The low temperature behaviour of a triangular lattice with Ising spins s =3 has been simulated by using both Glauber and Kawasaki dynamics. The formation of misfit clusters, which are essential for destabilizing the ordered state, are inhibited by the use of Kawasaki dynamics. The sublattice susceptibilities and the sublattice order parameter are found to depend qualitatively on the dynamics used so that robust ordering occurs when Kawasaki dynamics are employed. The thermal behaviour that is found for the spin model with Kawasaki dynamics gives insight into the observed ordering of side chains seen in a tetraphilic liquid crystal.



rate research

Read More

The recently fabricated two-dimensional magnetic materials Cu9X2(cpa)6.xH2O (cpa=2-carboxypentonic acid; X=F,Cl,Br) have copper sites which form a triangular kagome lattice (TKL), formed by introducing small triangles (``a-trimers) inside of each kagome triangle (``b-trimer). We show that in the limit where spins residing on b-trimers have Ising character, quantum fluctuations of XXZ spins residing on the a-trimers can be exactly accounted for in the absence of applied field. This is accomplished through a mapping to the kagome Ising model, for which exact analytic solutions exist. We derive the complete finite temperature phase diagram for this XXZ-Ising model, including the residual zero temperature entropies of the seven ground state phases. Whereas the disordered (spin liquid) ground state of the pure Ising TKL model has macroscopic residual entropy ln72=4.2767... per unit cell, the introduction of transverse(quantum) couplings between neighboring $a$-spins reduces this entropy to 2.5258... per unit cell. In the presence of applied magnetic field, we map the TKL XXZ-Ising model to the kagome Ising model with three-spin interactions, and derive the ground state phase diagram. A small (or even infinitesimal) field leads to a new phase that corresponds to a non-intersecting loop gas on the kagome lattice, with entropy 1.4053... per unit cell and a mean magnetization for the b-spins of 0.12(1) per site. In addition, we find that for moderate applied field, there is a critical spin liquid phase which maps to close-packed dimers on the honeycomb lattice, which survives even when the a-spins are in the Heisenberg limit.
We argue that a system of straight rigid rods of length k on square lattice with only hard-core interactions shows two phase transitions as a function of density, rho, for k >= 7. The system undergoes a phase transition from the low-density disordered phase to a nematic phase as rho is increased from 0, at rho = rho_c1, and then again undergoes a reentrant phase transition from the nematic phase to a disordered phase at rho = rho_c2 < 1.
58 - B. Doucot , L. B. Ioffe 2005
We construct the Hamiltonian description of the Chern-Simons theory with Z_n gauge group on a triangular lattice. We show that the Z_2 model can be mapped onto free Majorana fermions and compute the excitation spectrum. In the bulk the spectrum turns out to be gapless but acquires a gap if a magnetic term is added to the Hamiltonian. On a lattice edge one gets additional non-gauge invariant (matter) gapless degrees of freedom whose number grows linearly with the edge length. Therefore, a small hole in the lattice plays the role of a charged particle characterized by a non-trivial projective representation of the gauge group, while a long edge provides a decoherence mechanism for the fluxes. We discuss briefly the implications for the implementations of protected qubits.
Dielectric constant measurement under magnetic field is an efficient technique to study the coupling between charges and spins in insulating materials. For magnetic oxides, the geometric frustration is known to be a key ingredient to observe such a coupling. Measurements for the triangular Ising-like cobaltite Ca3Co2O6 have been made. Single crystals of Ca3Co2O6 are found to exhibit a magnetodielectric effect below TN=25K with a peak in the e(H) curve at the ferri to ferromagnetic transition. This relation between e and magnetization has been modelized by using two order parameters in an energy expansion derived from the Landau formalism and the fluctuation-dissipation theorem. This result emphasizes the great potential of insulating transition metal oxides for the search of magnetodielectric effect.
We study the thermodynamics of Ising spins on the triangular kagome lattice (TKL) using exact analytic methods as well as Monte Carlo simulations. We present the free energy, internal energy, specific heat, entropy, sublattice magnetizations, and susceptibility. We describe the rich phase diagram of the model as a function of coupling constants, temperature, and applied magnetic field. For frustrated interactions in the absence of applied field, the ground state is a spin liquid phase with integer residual entropy per spin $s_0/k_B={1/9} ln 72approx 0.4752...$. In weak applied field, the system maps to the dimer model on a honeycomb lattice, with irrational residual entropy 0.0359 per spin and quasi-long-range order with power-law spin-spin correlations that should be detectable by neutron scattering. The power-law correlations become exponential at finite temperatures, but the correlation length may still be long.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا