Do you want to publish a course? Click here

Fast procedures for Caputo fractional derivative and its applications to ordinary and partial differential equations

131   0   0.0 ( 0 )
 Added by Zhengguang Liu
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we develop fast procedures for solving linear systems arising from discretization of ordinary and partial differential equations with Caputo fractional derivative w.r.t time variable. First, we consider a finite difference scheme to solve a two-sided fractional ordinary equation. Furthermore, we present a fast solution technique to accelerate Toeplitz matrix-vector multiplications arising from finite difference discretization. This fast solution technique is based on a fast Fourier transform and depends on the special structure of coefficient matrices, and it helps to reduce the computational work from $O(N^{3})$ required by traditional methods to $O(Nlog^{2}N)$ and the memory requirement from $O(N^{2})$ to $O(N)$ without using any lossy compression, where $N$ is the number of unknowns. Two finite difference schemes to solve time fractional hyperbolic equations with different fractional order $gamma$ are considered. We present a fast solution technique depending on the special structure of coefficient matrices by rearranging the order of unknowns. It helps to reduce the computational work from $O(N^2M)$ required by traditional methods to $O(N$log$^{2}N)$ and the memory requirement from $O(NM)$ to $O(N)$ without using any lossy compression, where $N=tau^{-1}$ and $tau$ is the size of time step, $M=h^{-1}$ and $h$ is the size of space step. Importantly, a fast method is employed to solve the classical time fractional diffusion equation with a lower coast at $O(MN$log$^2N)$, where the direct method requires an overall computational complexity of $O(N^2M)$. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.



rate research

Read More

We identify the stochastic processes associated with one-sided fractional partial differential equations on a bounded domain with various boundary conditions. This is essential for modelling using spatial fractional derivatives. We show well-posedness of the associated Cauchy problems in $C_0(Omega)$ and $L_1(Omega)$. In order to do so we develop a new method of embedding finite state Markov processes into Feller processes and then show convergence of the respective Feller processes. This also gives a numerical approximation of the solution. The proof of well-posedness closes a gap in many numerical algorithm articles approximating solutions to fractional differential equations that use the Lax-Richtmyer Equivalence Theorem to prove convergence without checking well-posedness.
302 - W.Wang , A.J. Roberts 2009
Averaging is an important method to extract effective macroscopic dynamics from complex systems with slow modes and fast modes. This article derives an averaged equation for a class of stochastic partial differential equations without any Lipschitz assumption on the slow modes. The rate of convergence in probability is obtained as a byproduct. Importantly, the deviation between the original equation and the averaged equation is also studied. A martingale approach proves that the deviation is described by a Gaussian process. This gives an approximation to errors of $mathcal{O}(e)$ instead of $mathcal{O}(sqrt{e})$ attained in previous averaging.
This manuscript investigates the existence and uniqueness of solutions to the first order fractional anti-periodic boundary value problem involving Caputo-Katugampola (CK) derivative. A variety of tools for analysis this paper through the integral equivalent equation of the given problem, fixed point theorems of Leray--Schauder, Krasnoselskiis, and Banach are used. Examples of the obtained results are also presented.
We study an algorithm which has been proposed by Chinesta et al. to solve high-dimensional partial differential equations. The idea is to represent the solution as a sum of tensor products and to compute iteratively the terms of this sum. This algorithm is related to the so-called greedy algorithm introduced by Temlyakov. In this paper, we investigate the application of the greedy algorithm in finance and more precisely to the option pricing problem. We approximate the solution to the Black-Scholes equation and we propose a variance reduction method. In numerical experiments, we obtain results for up to 10 underlyings. Besides, the proposed variance reduction method permits an important reduction of the variance in comparison with a classical Monte Carlo method.
153 - Dean Baskin , Euan Spence , 2015
We consider three problems for the Helmholtz equation in interior and exterior domains in R^d (d=2,3): the exterior Dirichlet-to-Neumann and Neumann-to-Dirichlet problems for outgoing solutions, and the interior impedance problem. We derive sharp estimates for solutions to these problems that, in combination, give bounds on the inverses of the combined-field boundary integral operators for exterior Helmholtz problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا