Do you want to publish a course? Click here

Leptogenesis as an origin of dark matter and baryon asymmetries in the E6 inspired SUSY models

94   0   0.0 ( 0 )
 Added by Roman Nevzorov
 Publication date 2017
  fields
and research's language is English
 Authors R. Nevzorov




Ask ChatGPT about the research

We explore leptogenesis within the E6 inspired U(1) extension of the MSSM in which exact custodial symmetry forbids tree-level flavour-changing transitions and the most dangerous baryon and lepton number violating operators. This supersymmetric (SUSY) model involves extra exotic matter beyond the MSSM. In the simplest phenomenologically viable scenarios the lightest exotic fermions are neutral and stable. These states should be substantially lighter than 1 eV forming hot dark matter in the Universe. The low-energy effective Lagrangian of the SUSY model under consideration possesses an approximate global U(1)_E symmetry associated with the exotic states. The U(1)_E symmetry is explicitly broken because of the interactions between the right-handed neutrino superfields and exotic matter supermultiplets. As a consequence the decays of the lightest right-handed neutrino/sneutrino give rise to both U(1)_E and U(1)_{B-L} asymmetries. When all right-handed neutrino/sneutrino are relatively light sim 10^6-10^7 GeV the appropriate amount of the baryon asymmetry can be induced via these decays if the Yukawa couplings of the lightest right-handed neutrino superfields to the exotic matter supermultiplets vary between 10^{-4}-10^{-3}.



rate research

Read More

71 - R. Nevzorov 2018
The breakdown of E_6 within the supersymmetric (SUSY) Grand Unified Theories (GUTs) can result in SUSY extensions of the standard model (SM) based on the SM gauge group together with extra U(1) gauge symmetry under which right-handed neutrinos have zero charge. In these U(1)_N extensions of the minimal supersymmetric standard model (MSSM) a single discrete tilde{Z}^H_2 symmetry may be used to suppress the most dangerous operators, that give rise to proton decay as well as non-diagonal flavour transitions at low energies. The SUSY models under consideration involves Z and extra exotic matter beyond the MSSM. We discuss leptogenesis within this SUSY model and argue that the extra exotic states may lead to the non--standard Higgs decays.
We propose a model of asymmetric dark matter (DM) where the dark sector is an identical copy of both forces and matter of the standard model (SM) as in the mirror universe models discussed in literature. In addition to being connected by gravity, the SM and DM sectors are also connected at high temperature by a common set of heavy right-handed Majorana neutrinos via their Yukawa couplings to leptons and Higgs bosons. The lightest nucleon in the dark (mirror) sector is a candidate for dark matter. The out of equilibrium decay of right-handed neutrino produces equal lepton asymmetry in both sectors via resonant leptogenesis which then get converted to baryonic and dark baryonic matter. The dark baryon asymmetry due to higher dark nucleon masses leads to higher dark matter density compared to the familiar baryon density that is observed. The standard model neutrinos in this case acquire masses from the inverse seesaw mechanism. A kinetic mixing between the U(1) gauge fields of the two sectors is introduced to guarantee the success of Big-Bang Nucleosynthesis.
88 - P. Athron 2016
We investigate dark matter in a constrained $E_6$ inspired supersymmetric model with an exact custodial symmetry and compare with the CMSSM. The breakdown of $E_6$ leads to an additional $U(1)_N$ symmetry and a discrete matter parity. The custodial and matter symmetries imply there are two stable dark matter candidates, though one may be extremely light and contribute negligibly to the relic density. We demonstrate that a predominantly Higgsino, or mixed bino-Higgsino, neutralino can account for all of the relic abundance of dark matter, while fitting a 125 GeV SM-like Higgs and evading LHC limits on new states. However we show that the recent LUX 2016 limit on direct detection places severe constraints on the mixed bino-Higgsino scenarios that explain all of the dark matter. Nonetheless we still reveal interesting scenarios where the gluino, neutralino and chargino are light and discoverable at the LHC, but the full relic abundance is not accounted for. At the same time we also show that there is a huge volume of parameter space, with a predominantly Higgsino dark matter candidate that explains all the relic abundance, that will be discoverable with XENON1T. Finally we demonstrate that for the $E_6$ inspired model the exotic leptoquarks could still be light and within range of future LHC searches.
It is well known that global symmetries protect local supersymmetry and a zero value for the cosmological constant in no--scale supergravity. The breakdown of these symmetries, which ensure the vanishing of the vacuum energy density, results in a set of degenerate vacua with broken and unbroken supersymmetry leading to the natural realisation of the multiple point principle (MPP). Assuming the degeneracy of vacua with broken and unbroken SUSY in the hidden sector we estimate the value of the cosmological constant. We argue that the observed value of the dark energy density can be reproduced in the split-SUSY scenario if the SUSY breaking scale is of the order of 10^{10} GeV.
In this work, we explain three beyond standard model (BSM) phenomena, namely neutrino masses, the baryon asymmetry of the Universe and Dark Matter, within a single model and in each explanation the right handed (RH) neutrinos play the prime role. Indeed by just introducing two RH neutrinos we can generate the neutrino masses by the Type-I seesaw mechanism. The baryon asymmetry of the Universe can arise from thermal leptogenesis from the decay of lightest RH neutrino before the decoupling of the electroweak sphaleron transitions, which redistribute the $ B-L $ number into a baryon number. At the same time, the decay of the RH neutrino can produce the Dark Matter (DM) as an asymmetric Dark Matter component. The source of CP violation in the two sectors is exactly the same, related to the complex couplings of the neutrinos. By determining the comoving number density for different values of the CP violation in the DM sector, we obtain a particular value of the DM mass after satisfying the relic density bound. We also give prediction for the DM direct detection (DD) in the near future by different ongoing DD experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا