Do you want to publish a course? Click here

Dark Matter in a Constrained $E_6$ Inspired SUSY Model

89   0   0.0 ( 0 )
 Added by Dylan Harries
 Publication date 2016
  fields
and research's language is English
 Authors P. Athron




Ask ChatGPT about the research

We investigate dark matter in a constrained $E_6$ inspired supersymmetric model with an exact custodial symmetry and compare with the CMSSM. The breakdown of $E_6$ leads to an additional $U(1)_N$ symmetry and a discrete matter parity. The custodial and matter symmetries imply there are two stable dark matter candidates, though one may be extremely light and contribute negligibly to the relic density. We demonstrate that a predominantly Higgsino, or mixed bino-Higgsino, neutralino can account for all of the relic abundance of dark matter, while fitting a 125 GeV SM-like Higgs and evading LHC limits on new states. However we show that the recent LUX 2016 limit on direct detection places severe constraints on the mixed bino-Higgsino scenarios that explain all of the dark matter. Nonetheless we still reveal interesting scenarios where the gluino, neutralino and chargino are light and discoverable at the LHC, but the full relic abundance is not accounted for. At the same time we also show that there is a huge volume of parameter space, with a predominantly Higgsino dark matter candidate that explains all the relic abundance, that will be discoverable with XENON1T. Finally we demonstrate that for the $E_6$ inspired model the exotic leptoquarks could still be light and within range of future LHC searches.



rate research

Read More

57 - P. Athron 2015
We explore the relic density of dark matter and the particle spectrum within a constrained version of an $E_6$ inspired SUSY model with an extra $U(1)_N$ gauge symmetry. In this model a single exact custodial symmetry forbids tree-level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. We present a set of benchmark points showing scenarios that have a SM-like Higgs mass of 125 GeV and sparticle masses above the LHC limits. They lead to striking new physics signatures which may be observed during run II of the LHC and can distinguish this model from the simplest SUSY extensions of the SM. At the same time these benchmark scenarios are consistent with the measured dark matter abundance and necessarily lead to large dark matter direct detection cross sections close to current limits and observable soon at the XENON1T experiment.
Motivated by the recent result of XENON1T collaboration with full exposure, 279 life days, that sets the most stringent limit on the spin-independent dark matter-nucleon scattering cross section we discuss a dark $E_6$-inspired model that features the presence of a $U(1)_{d-u}$ gauge symmetry. The dark matter candidate is a Dirac fermion that interacts with Standard Model fermions via a massive Z that preserves the quantum number assignments of this symmetry. We compute the spin-independent scattering cross section off xenon nucleus and compare with the XENON1T limit; find the LHC bound on the Z mass as well as the projection sensitivity of high-energy and luminosity LHC; and derive the Fermi-LAT bounds on the dark matter annihilation cross section based on the observation of gamma-rays in the direction of Dwarf Spheroidal galaxies. We exploit the complementarity between these datasets to conclude that the new bound from XENON1T severely constrain the model, which combined with the LHC upgrade sensitivity rules out this WIMP realization setup below 5 TeV.
We study the thermal leptogenesis in the $E_6times U(1)_A$ SUSY GUT model in which realistic masses and mixings of quarks and leptons can be realized. We show that the sufficient baryon number can be produced by the leptogenesis in the model, in which the mass parameter of the lightest right-handed neutrino is predicted to be smaller than $10^8$ GeV. The essential point is that the mass of the lightest right-handed neutrino can be enhanced in the model because it has a lot of mass terms whose mass parameters are predicted to be the same order of magnitude which is smaller than $10^8$ GeV. We show that O(10) enhancement for the lightest right-handed neutrino mass is sufficient for the observed baryon asymmetry. Note that such mass enhancements do not change the predictions of neutrino masses and mixings at the low energy scale in the $E_6$ model which has six right-handed neutrinos. In the calculation, we include the effects of supersymmetry and flavor in final states of the right-handed neutrino decay. We show that the effect of supersymmetry is quite important even in the strong washout regime when the effect of flavor is included. This is because the washout effects on the asymmetries both of the muon and the electron become weaker than that of the tau asymmetry.
The breakdown of SU(6) global symmetry down to its SU(5) subgroup near the scale f > 10 TeV in the strongly interacting sector within the E_6 inspired composite Higgs model (E6CHM) gives rise to a set of pseudo-Nambu-Goldstone bosons (pNGBs) that involves one Standard Model (SM) singlet scalar, a SM-like Higgs doublet and an SU(3)_C triplet of scalar fields, $T$. We argue that the baryon number violation in the E6CHM can induce the observed matter-antimatter asymmetry if CP is violated. The coloured triplet of scalar fields with mass in the few TeV range plays a key role in this process and may lead to a distinct new physics signal that can be detected at the LHC in the near future.
In this paper we analyze a dark matter model inspired by theories with extra dimensions. The dark matter candidate corresponds to the first Kaluza-Klein mode of a real scalar added to the Standard Model. The tower of new particles enriches the calculation of the relic abundance. For large mass splitting, the model converges to the predictions of the inert singlet dark matter model. For nearly degenerate mass spectrum, coannihilations increase the cross-sections used for direct and indirect dark matter searches. Moreover, the Kaluza-Klein zero mode can mix with the SM higgs and further constraints can be applied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا