No Arabic abstract
Least Absolute Shrinkage and Selection Operator or the Lasso, introduced by Tibshirani (1996), is a popular estimation procedure in multiple linear regression when underlying design has a sparse structure, because of its property that it sets some regression coefficients exactly equal to 0. In this article, we develop a perturbation bootstrap method and establish its validity in approximating the distribution of the Lasso in heteroscedastic linear regression. We allow the underlying covariates to be either random or non-random. We show that the proposed bootstrap method works irrespective of the nature of the covariates, unlike the resample-based bootstrap of Freedman (1981) which must be tailored based on the nature (random vs non-random) of the covariates. Simulation study also justifies our method in finite samples.
In this work, we introduce statistical testing under distributional shifts. We are interested in the hypothesis $P^* in H_0$ for a target distribution $P^*$, but observe data from a different distribution $Q^*$. We assume that $P^*$ is related to $Q^*$ through a known shift $tau$ and formally introduce hypothesis testing in this setting. We propose a general testing procedure that first resamples from the observed data to construct an auxiliary data set and then applies an existing test in the target domain. We prove that if the size of the resample is at most $o(sqrt{n})$ and the resampling weights are well-behaved, this procedure inherits the pointwise asymptotic level and power from the target test. If the map $tau$ is estimated from data, we can maintain the above guarantees under mild conditions if the estimation works sufficiently well. We further extend our results to uniform asymptotic level and a different resampling scheme. Testing under distributional shifts allows us to tackle a diverse set of problems. We argue that it may prove useful in reinforcement learning and covariate shift, we show how it reduces conditional to unconditional independence testing and we provide example applications in causal inference.
Inferring causal relationships or related associations from observational data can be invalidated by the existence of hidden confounding. We focus on a high-dimensional linear regression setting, where the measured covariates are affected by hidden confounding and propose the {em Doubly Debiased Lasso} estimator for individual components of the regression coefficient vector. Our advocated method simultaneously corrects both the bias due to estimation of high-dimensional parameters as well as the bias caused by the hidden confounding. We establish its asymptotic normality and also prove that it is efficient in the Gauss-Markov sense. The validity of our methodology relies on a dense confounding assumption, i.e. that every confounding variable affects many covariates. The finite sample performance is illustrated with an extensive simulation study and a genomic application.
While there have been a lot of recent developments in the context of Bayesian model selection and variable selection for high dimensional linear models, there is not much work in the presence of change point in literature, unlike the frequentist counterpart. We consider a hierarchical Bayesian linear model where the active set of covariates that affects the observations through a mean model can vary between different time segments. Such structure may arise in social sciences/ economic sciences, such as sudden change of house price based on external economic factor, crime rate changes based on social and built-environment factors, and others. Using an appropriate adaptive prior, we outline the development of a hierarchical Bayesian methodology that can select the true change point as well as the true covariates, with high probability. We provide the first detailed theoretical analysis for posterior consistency with or without covariates, under suitable conditions. Gibbs sampling techniques provide an efficient computational strategy. We also consider small sample simulation study as well as application to crime forecasting applications.
Cooks distance [Technometrics 19 (1977) 15-18] is one of the most important diagnostic tools for detecting influential individual or subsets of observations in linear regression for cross-sectional data. However, for many complex data structures (e.g., longitudinal data), no rigorous approach has been developed to address a fundamental issue: deleting subsets with different numbers of observations introduces different degrees of perturbation to the current model fitted to the data, and the magnitude of Cooks distance is associated with the degree of the perturbation. The aim of this paper is to address this issue in general parametric models with complex data structures. We propose a new quantity for measuring the degree of the perturbation introduced by deleting a subset. We use stochastic ordering to quantify the stochastic relationship between the degree of the perturbation and the magnitude of Cooks distance. We develop several scaled Cooks distances to resolve the comparison of Cooks distance for different subset deletions. Theoretical and numerical examples are examined to highlight the broad spectrum of applications of these scaled Cooks distances in a formal influence analysis.
The impracticality of posterior sampling has prevented the widespread adoption of spike-and-slab priors in high-dimensional applications. To alleviate the computational burden, optimization strategies have been proposed that quickly find local posterior modes. Trading off uncertainty quantification for computational speed, these strategies have enabled spike-and-slab deployments at scales that would be previously unfeasible. We build on one recent development in this strand of work: the Spike-and-Slab LASSO procedure of Rov{c}kov{a} and George (2018). Instead of optimization, however, we explore multiple avenues for posterior sampling, some traditional and some new. Intrigued by the speed of Spike-and-Slab LASSO mode detection, we explore the possibility of sampling from an approximate posterior by performing MAP optimization on many independently perturbed datasets. To this end, we explore Bayesian bootstrap ideas and introduce a new class of jittered Spike-and-Slab LASSO priors with random shrinkage targets. These priors are a key constituent of the Bayesian Bootstrap Spike-and-Slab LASSO (BB-SSL) method proposed here. BB-SSL turns fast optimization into approximate posterior sampling. Beyond its scalability, we show that BB-SSL has a strong theoretical support. Indeed, we find that the induced pseudo-posteriors contract around the truth at a near-optimal rate in sparse normal-means and in high-dimensional regression. We compare our algorithm to the traditional Stochastic Search Variable Selection (under Laplace priors) as well as many state-of-the-art methods for shrinkage priors. We show, both in simulations and on real data, that our method fares superbly in these comparisons, often providing substantial computational gains.