No Arabic abstract
Knee osteoarthritis (OA) is the most common musculoskeletal disorder. OA diagnosis is currently conducted by assessing symptoms and evaluating plain radiographs, but this process suffers from subjectivity. In this study, we present a new transparent computer-aided diagnosis method based on the Deep Siamese Convolutional Neural Network to automatically score knee OA severity according to the Kellgren-Lawrence grading scale. We trained our method using the data solely from the Multicenter Osteoarthritis Study and validated it on randomly selected 3,000 subjects (5,960 knees) from Osteoarthritis Initiative dataset. Our method yielded a quadratic Kappa coefficient of 0.83 and average multiclass accuracy of 66.71% compared to the annotations given by a committee of clinical experts. Here, we also report a radiological OA diagnosis area under the ROC curve of 0.93. We also present attention maps -- given as a class probability distribution -- highlighting the radiological features affecting the network decision. This information makes the decision process transparent for the practitioner, which builds better trust toward automatic methods. We believe that our model is useful for clinical decision making and for OA research; therefore, we openly release our training codes and the data set created in this study.
Knee osteoarthritis (OA) is the most common musculoskeletal disease without a cure, and current treatment options are limited to symptomatic relief. Prediction of OA progression is a very challenging and timely issue, and it could, if resolved, accelerate the disease modifying drug development and ultimately help to prevent millions of total joint replacement surgeries performed annually. Here, we present a multi-modal machine learning-based OA progression prediction model that utilizes raw radiographic data, clinical examination results and previous medical history of the patient. We validated this approach on an independent test set of 3,918 knee images from 2,129 subjects. Our method yielded area under the ROC curve (AUC) of 0.79 (0.78-0.81) and Average Precision (AP) of 0.68 (0.66-0.70). In contrast, a reference approach, based on logistic regression, yielded AUC of 0.75 (0.74-0.77) and AP of 0.62 (0.60-0.64). The proposed method could significantly improve the subject selection process for OA drug-development trials and help the development of personalized therapeutic plans.
Knee osteoarthritis (OA) is the most common musculoskeletal disease in the world. In primary healthcare, knee OA is diagnosed using clinical examination and radiographic assessment. Osteoarthritis Research Society International (OARSI) atlas of OA radiographic features allows to perform independent assessment of knee osteophytes, joint space narrowing and other knee features. This provides a fine-grained OA severity assessment of the knee, compared to the gold standard and most commonly used Kellgren-Lawrence (KL) composite score. However, both OARSI and KL grading systems suffer from moderate inter-rater agreement, and therefore, the use of computer-aided methods could help to improve the reliability of the process. In this study, we developed a robust, automatic method to simultaneously predict KL and OARSI grades in knee radiographs. Our method is based on Deep Learning and leverages an ensemble of deep residual networks with 50 layers, squeeze-excitation and ResNeXt blocks. Here, we used transfer learning from ImageNet with a fine-tuning on the whole Osteoarthritis Initiative (OAI) dataset. An independent testing of our model was performed on the whole Multicenter Osteoarthritis Study (MOST) dataset. Our multi-task method yielded Cohens kappa coefficients of 0.82 for KL-grade and 0.79, 0.84, 0.94, 0.83, 0.84, 0.90 for femoral osteophytes, tibial osteophytes and joint space narrowing for lateral and medial compartments respectively. Furthermore, our method yielded area under the ROC curve of 0.98 and average precision of 0.98 for detecting the presence of radiographic OA (KL $geq 2$), which is better than the current state-of-the-art.
Osteoarthritis (OA) is a common musculoskeletal condition typically diagnosed from radiographic assessment after clinical examination. However, a visual evaluation made by a practitioner suffers from subjectivity and is highly dependent on the experience. Computer-aided diagnostics (CAD) could improve the objectivity of knee radiographic examination. The first essential step of knee OA CAD is to automatically localize the joint area. However, according to the literature this task itself remains challenging. The aim of this study was to develop novel and computationally efficient method to tackle the issue. Here, three different datasets of knee radiographs were used (n = 473/93/77) to validate the overall performance of the method. Our pipeline consists of two parts: anatomically-based joint area proposal and their evaluation using Histogram of Oriented Gradients and the pre-trained Support Vector Machine classifier scores. The obtained results for the used datasets show the mean intersection over the union equal to: 0.84, 0.79 and 0.78. Using a high-end computer, the method allows to automatically annotate conventional knee radiographs within 14-16ms and high resolution ones within 170ms. Our results demonstrate that the developed method is suitable for large-scale analyses.
State-of-the-art automated segmentation algorithms are not 100% accurate especially when segmenting difficult to interpret datasets like those with severe osteoarthritis (OA). We present a novel interactive method called just-enough interaction (JEI), which adds a fast correction step to the automated layered optimal graph segmentation of multiple objects and surfaces (LOGISMOS). After LOGISMOS segmentation in knee MRI, the JEI user interaction does not modify boundary surfaces of the bones and cartilages directly. Local costs of underlying graph nodes are modified instead and the graph is re-optimized, providing globally optimal corrected results. Significant performance improvement ($p ll 0.001$) was observed when comparing JEI-corrected results to the automated. The algorithm was extended from 3D JEI to longitudinal multi-3D (4D) JEI allowing simultaneous visualization and interaction of multiple-time points of the same patient.
We present a fully automated learning-based approach for segmenting knee cartilage in the presence of osteoarthritis (OA). The algorithm employs a hierarchical set of two random forest classifiers. The first is a neighborhood approximation forest, the output probability map of which is utilized as a feature set for the second random forest (RF) classifier. The output probabilities of the hierarchical approach are used as cost functions in a Layered Optimal Graph Segmentation of Multiple Objects and Surfaces (LOGISMOS). In this work, we highlight a novel post-processing interaction called just-enough interaction (JEI) which enables quick and accurate generation of a large set of training examples. Disjoint sets of 15 and 13 subjects were used for training and tested on another disjoint set of 53 knee datasets. All images were acquired using a double echo steady state (DESS) MRI sequence and are from the osteoarthritis initiative (OAI) database. Segmentation performance using the learning-based cost function showed significant reduction in segmentation errors ($p< 0.05$) in comparison with conventional gradient-based cost functions.