Do you want to publish a course? Click here

Finding a complex polarized signal in wide-band radio data

188   0   0.0 ( 0 )
 Added by Dominic Schnitzeler
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new algorithm for fitting and classifying polarized radio sources, which is based on the QU fitting method introduced by OSullivan et al. and on our analysis of pulsars. Then we test this algorithm using Monte Carlo simulations of observations in the 16 cm band of the Australia Telescope Compact Array (1.3-3.1 GHz), to quantify how often the algorithm identifies the correct source model, how certain it is of this identification, and how the parameters of the injected and fitted models compare. In our analysis we consider the Akaike and Bayesian Information Criteria, and model averaging. For the observing setup we simulated, the Bayesian Information Criterion, without model averaging, is the best way for identifying the correct model and for estimating its parameters. Sources can only be identified correctly if their parameters lie inside a Goldilocks region: strong depolarization makes it impossible to detect sources that emit over a wide range in RM, whereas sources that emit over a narrow range in RM cannot be told apart from simpler sources or sources that emit at only one RM. We identify when emission at similar RMs is resolved, and quantify this in a way similar to the Rayleigh criterion in optics. Also, we identify pitfalls in RM synthesis that are avoided by QU fitting. Finally, we show how channel weights can be tweaked to produce apodized RM spectra, that observing time requirements in RM synthesis and QU fitting are the same, and we analyse when to stop RMClean.



rate research

Read More

We develop two algorithms, based on maximum likelihood (ML) inference, for estimating the parameters of polarized radio sources which emit at a single rotation measure (RM), e.g., pulsars. These algorithms incorporate the flux density spectrum of the source, either a power law or a scaled version of the Stokes I spectrum, and a variation in sensitivity across the observing band. We quantify the detection significance and measurement uncertainties in the fitted parameters, and we derive weight
We describe an active antenna system for HF/VHF (long wavelength) radio astronomy that has been successfully deployed 256-fold as the first station (LWA1) of the planned Long Wavelength Array. The antenna system, consisting of crossed dipoles, an active balun/preamp, a support structure, and a ground screen has been shown to successfully operate over at least the band from 20 MHz (15 m wavelength) to 80 MHz (3.75 m wavelength) with a noise figure that is at least 6 dB better than the Galactic background emission noise temperature over that band. Thus, the goal to design and construct a compact, inexpensive, rugged, and easily assembled antenna system that can be deployed many-fold to form numerous large individual stations for the purpose of building a large, long wavelength synthesis array telescope for radio astronomical and ionospheric observations was met.
SOXS (Son Of X-Shooter) will be a spectrograph for the ESO NTT telescope capable to cover the optical and NIR bands, based on the heritage of the X-Shooter at the ESO-VLT. SOXS will be built and run by an international consortium, carrying out rapid and longer term Target of Opportunity requests on a variety of astronomical objects. SOXS will observe all kind of transient and variable sources from different surveys. These will be a mixture of fast alerts (e.g. gamma-ray bursts, gravitational waves, neutrino events), mid-term alerts (e.g. supernovae, X-ray transients), fixed time events (e.g. close-by passage of minor bodies). While the focus is on transients and variables, still there is a wide range of other astrophysical targets and science topics that will benefit from SOXS. The design foresees a spectrograph with a Resolution-Slit product ~ 4500, capable of simultaneously observing over the entire band the complete spectral range from the U- to the H-band. The limiting magnitude of R~20 (1 hr at S/N~10) is suited to study transients identified from on-going imaging surveys. Light imaging capabilities in the optical band (grizy) are also envisaged to allow for multi-band photometry of the faintest transients. This paper outlines the status of the project, now in Final Design Phase.
237 - S. Pipien , S. Basa , J.-G. Cuby 2017
The Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) has been conducted over a five-year period at the CFHT with the MegaCam instrument, totaling 450 nights of observations. The Wide Synoptic Survey is one component of the CFHTLS, covering 155 square degrees in four patches of 23 to 65 square degrees through the whole MegaCam filter set (u*, g, r, i, z) down to i$_{AB}$ = 24.5. With the motivation of searching for high-redshift quasars at redshifts above 6.5, we extend the multi-wavelength CFHTLS-Wide data in the Y-band down to magnitudes of $sim$ 22.5 for point sources (5$sigma$). We observed the four CFHTLS-Wide fields (except one quarter of the W3 field) in the Y-band with the WIRCam instrument at the CFHT. Each field was visited twice, at least three weeks apart. Each visit consisted of two dithered exposures. The images are reduced with the Elixir software used for the CFHTLS and modified to account for the properties of near-InfraRed (IR) data. Two series of image stacks are subsequently produced: four-image stacks for each WIRCam pointing, and one-square-degree tiles matched to the format of the CFHTLS data release. Photometric calibration is performed on stars by fitting stellar spectra to their CFHTLS photometric data and extrapolating their Y-band magnitudes. We measure a limiting magnitude of Y$_{AB} simeq 22.4$ for point sources (5$sigma$) in an aperture diameter of 0.93, over 130 square degrees. We produce a multi-wavelength catalogue combining the CFHTLS-Wide optical data with our CFHQSIR (Canada-France High-z quasar survey in the near-InfraRed) Y-band data. We derive the Y-band number counts and compare them to the VIDEO survey. We find that the addition of the CFHQSIR Y-band data to the CFHTLS optical data increases the accuracy of photometric redshifts and reduces the outlier rate from 13.8% to 8.8% in the redshift range 1.05 $lesssim$ z $lesssim$ 1.2.
One of the main considerations in the ALMA Development Roadmap for the future of operations beyond 2030 is to at least double its on-sky instantaneous bandwidth capabilities. Thanks to the technological innovations of the past two decades, we can now produce wider bandwidth receivers than were foreseen at the time of the original ALMA specifications. In several cases, the band edges set by technology at that time are also no longer relevant. In this memo, we look into the scientific advantages of beginning with Band 2 when implementing such wideband technologies. The Band 2 receiver system will be the last of the original ALMA bands, completing ALMAs coverage of the atmospheric windows from 35-950 GHz, and is not yet covered by any other ALMA receiver. New receiver designs covering and significantly extending the original ALMA Band 2 frequency range (67-90 GHz) can now implement these technologies. We explore the scientific and operational advantages of a receiver covering the full 67-116 GHz atmospheric window. In addition to technological goals, the ALMA Development Roadmap provides 3 new key science drivers for ALMA, to probe: 1) the Origins of Galaxies, 2) the Origins of Chemical Complexity, and 3) the Origins of Planets. In this memo, we describe how the wide RF Band 2 system can help achieve these goals, enabling several high-profile science programmes to be executed uniquely or more effectively than with separate systems, requiring an overall much lower array time and achieving more consistent calibration accuracy: contiguous broad-band spectral surveys, measurements of deuterated line ratios, and more generally fractionation studies, improved continuum measurements (also necessary for reliable line flux measurements), simultaneous broad-band observations of transient phenomena, and improved bandwidth for 3 mm very long baseline interferometry (VLBI).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا