Do you want to publish a course? Click here

On Quantum Stabilizer Codes derived from Local Frobenius Rings

155   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper we consider stabilizer codes over local Frobenius rings. First, we study the relative minimum distances of a stabilizer code and its reduction onto the residue field. We show that for various scenarios, a free stabilizer code over the ring does not underperform the according stabilizer code over the field. This leads us to conjecture that the same is true for all free stabilizer codes. Secondly, we focus on the isometries of stabilizer codes. We present some preliminary results and introduce some interesting open problems.



rate research

Read More

This is a survey on the theory of skew-cyclic codes based on skew-polynomial rings of automorphism type. Skew-polynomial rings have been introduced and discussed by Ore (1933). Evaluation of skew polynomials and sets of (right) roots were first considered by Lam (1986) and studied in great detail by Lam and Leroy thereafter. After a detailed presentation of the most relevant properties of skew polynomials, we survey the algebraic theory of skew-cyclic codes as introduced by Boucher and Ulmer (2007) and studied by many authors thereafter. A crucial role will be played by skew-circulant matrices. Finally, skew-cyclic codes with designed minimum distance are discussed, and we report on two different kinds of skew-BCH codes, which were designed in 2014 and later.
A structure theorem of the group codes which are relative projective for the subgroup $lbrace 1 rbrace$ of $G$ is given. With this, we show that all such relative projective group codes in a fixed group algebra $RG$ are in bijection to the chains of projective group codes of length $ell$ in the group algebra $mathbb{F}G$, where $mathbb{F}$ is the residue field of $R$. We use a given chain to construct the dual code in $RG$ and also derive the minimum Hamming weight as well as a lower bound of the minimum euclidean weight.
In this paper, we clarify some aspects on LCD codes in the literature. We first prove that a non-free LCD code does not exist over finite commutative Frobenius local rings. We then obtain a necessary and sufficient condition for the existence of LCD code over finite commutative Frobenius rings. We later show that a free constacyclic code over finite chain ring is LCD if and only if it is reversible, and also provide a necessary and sufficient condition for a constacyclic code to be reversible over finite chain rings. We illustrate the minimum Lee-distance of LCD codes over some finite commutative chain rings and demonstrate the results with examples. We also got some new optimal $mathbb{Z}_4$ codes of different lengths {which are} cyclic LCD codes over $mathbb{Z}_4$.
In this paper we give the generalization of lifted codes over any finite chain ring. This has been done by using the construction of finite chain rings from $p$-adic fields. Further we propose a lattice construction from linear codes over finite chain rings using lifted codes.
We apply quantum Construction X on quasi-cyclic codes with large Hermitian hulls over $mathbb{F}_4$ and $mathbb{F}_9$ to derive good qubit and qutrit stabilizer codes, respectively. In several occasions we obtain quantum codes with stricly improved parameters than the current record. In numerous other occasions we obtain quantum codes with best-known performance. For the qutrit ones we supply a systematic construction to fill some gaps in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا