Do you want to publish a course? Click here

The Brown-Peterson spectrum is not $E_{2(p^2+2)}$ at odd primes

68   0   0.0 ( 0 )
 Added by Andrew Senger
 Publication date 2017
  fields
and research's language is English
 Authors Andrew Senger




Ask ChatGPT about the research

Recently, Lawson has shown that the 2-primary Brown-Peterson spectrum does not admit the structure of an $E_{12}$ ring spectrum, thus answering a question of May in the negative. We extend Lawsons result to odd primes by proving that the p-primary Brown-Peterson spectrum does not admit the structure of an $E_{2(p^2+2)}$ ring spectrum. We also show that there can be no map $MU to BP$ of $E_{2p+3}$ ring spectra at any prime.



rate research

Read More

85 - Tyler Lawson 2017
The dual Steenrod algebra has a canonical subalgebra isomorphic to the homology of the Brown-Peterson spectrum. We will construct a secondary operation in mod-2 homology and show that this canonical subalgebra is not closed under it. This allows us to conclude that the 2-primary Brown-Peterson spectrum does not admit the structure of an E_n-algebra for any n greater than or equal to 12, answering a question of May in the negative.
We calculate the homotopy type of $L_1L_{K(2)}S^0$ and $L_{K(1)}L_{K(2)}S^0$ at the prime 2, where $L_{K(n)}$ is localization with respect to Morava $K$-theory and $L_1$ localization with respect to $2$-local $K$ theory. In $L_1L_{K(2)}S^0$ we find all the summands predicted by the Chromatic Splitting Conjecture, but we find some extra summands as well. An essential ingredient in our approach is the analysis of the continuous group cohomology $H^ast_c(mathbb{G}_2,E_0)$ where $mathbb{G}_2$ is the Morava stabilizer group and $E_0 = mathbb{W}[[u_1]]$ is the ring of functions on the height $2$ Lubin-Tate space. We show that the inclusion of the constants $mathbb{W} to E_0$ induces an isomorphism on group cohomology, a radical simplification.
We calculate the homotopy type of the Brown-Comenetz dual $I_2$ of the K(2)-local sphere at the prime 3 and show that there is a twisting by a non-trivial element $P$ in the exotic part of the Picard group. We give a complete characterization of $P$ as well. The main technique is to give a sequence of calculations of the homotopy groups of elements of the Picard group after smashing with the Smith-Toda complex V(1).
Fix the base field Q of rational numbers and let BP<n> denote the family of motivic truncated Brown-Peterson spectra over Q. We employ a local-to-global philosophy in order to compute the motivic Adams spectral sequence converging to the bi-graded homotopy groups of BP<n>. Along the way, we provide a new computation of the homotopy groups of BP<n> over the 2-adic rationals, prove a motivic Hasse principle for the spectra BP<n>, and deduce several classical and recent theorems about the K-theory of particular fields.
The $ER(2)$-cohomology of $Bmathbb{Z}/(2^q)$ and $mathbb{C}P^n$ are computed along with the Atiyah-Hirzebruch spectral sequence for $ER(2)^*(mathbb{C}P^infty)$. This, along with other papers in this series, gives us the $ER(2)$-cohomology of all Eilenberg-MacLane spaces. Since $ER(2)$ is $TMF_0(3)$ after a suitable completion, these computations also take care of that theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا