No Arabic abstract
We study the computational power of deciding whether a given truth-table can be described by a circuit of a given size (the Minimum Circuit Size Problem, or MCSP for short), and of the variant denoted as MKTP where circuit size is replaced by a polynomially-related Kolmogorov measure. All prior reductions from supposedly-intractable problems to MCSP / MKTP hinged on the power of MCSP / MKTP to distinguish random distributions from distributions produced by hardness-based pseudorandom generator constructions. We develop a fundamentally different approach inspired by the well-known interactive proof system for the complement of Graph Isomorphism (GI). It yields a randomized reduction with zero-sided error from GI to MKTP. We generalize the result and show that GI can be replaced by any isomorphism problem for which the underlying group satisfies some elementary properties. Instantiations include Linear Code Equivalence, Permutation Group Conjugacy, and Matrix Subspace Conjugacy. Along the way we develop encodings of isomorphism classes that are efficiently decodable and achieve compression that is at or near the information-theoretic optimum; those encodings may be of independent interest.
There has been significant recent progress on algorithms for approximating graph spanners, i.e., algorithms which approximate the best spanner for a given input graph. Essentially all of these algorithms use the same basic LP relaxation, so a variety of papers have studied the limitations of this approach and proved integrality gaps for this LP in a variety of settings. We extend these results by showing that even the strongest lift-and-project methods cannot help significantly, by proving polynomial integrality gaps even for $n^{Omega(epsilon)}$ levels of the Lasserre hierarchy, for both the directed and undirected spanner problems. We also extend these integrality gaps to related problems, notably Directed Steiner Network and Shallow-Light Steiner Network.
In recent years, we have seen several approaches to the graph isomorphism problem based on generic mathematical programming or algebraic (Grobner basis) techniques. For most of these, lower bounds have been established. In fact, it has been shown that the pairs of nonisomorphic CFI-graphs (introduced by Cai, Furer, and Immerman in 1992 as hard examples for the combinatorial Weisfeiler-Leman algorithm) cannot be distinguished by these mathematical algorithms. A notable exception were the algebraic algorithms over the field GF(2), for which no lower bound was known. Another, in some way even stronger, approach to graph isomorphism testing is based on solving systems of linear Diophantine equations (that is, linear equations over the integers), which is known to be possible in polynomial time. So far, no lower bounds for this approach were known. Lower bounds for the algebraic algorithms can best be proved in the framework of proof complexity, where they can be phrased as lower bounds for algebraic proof systems such as Nullstellensatz or the (more powerful) polynomial calculus. We give new hard examples for these systems: families of pairs of non-isomorphic graphs that are hard to distinguish by polynomial calculus proofs simultaneously over all prime fields, including GF(2), as well as examples that are hard to distinguish by the systems-of-linear-Diophantine-equations approach. In a previous paper, we observed that the CFI-graphs are closely related to what we call group CSPs: constraint satisfaction problems where the constraints are membership tests in some coset of a subgroup of a cartesian power of a base group (Z_2 in the case of the classical CFI-graphs). Our new examples are also based on group CSPs (for Abelian groups), but here we extend the CSPs by a few non-group constraints to obtain even harder instances for graph isomorphism.
In this paper we consider the problems of testing isomorphism of tensors, $p$-groups, cubic forms, algebras, and more, which arise from a variety of areas, including machine learning, group theory, and cryptography. These problems can all be cast as orbit problems on multi-way arrays under different group actions. Our first two main results are: 1. All the aforementioned isomorphism problems are equivalent under polynomial-time reductions, in conjunction with the recent results of Futorny-Grochow-Sergeichuk (Lin. Alg. Appl., 2019). 2. Isomorphism of $d$-tensors reduces to isomorphism of 3-tensors, for any $d geq 3$. Our results suggest that these isomorphism problems form a rich and robust equivalence class, which we call Tensor Isomorphism-complete, or TI-complete. We then leverage the techniques used in the above results to prove two first-of-their-kind results for Group Isomorphism (GpI): 3. We give a reduction from GpI for $p$-groups of exponent $p$ and small class ($c < p$) to GpI for $p$-groups of exponent $p$ and class 2. The latter are widely believed to be the hardest cases of GpI, but as far as we know, this is the first reduction from any more general class of groups to this class. 4. We give a search-to-decision reduction for isomorphism of $p$-groups of exponent $p$ and class 2 in time $|G|^{O(log log |G|)}$. While search-to-decision reductions for Graph Isomorphism (GI) have been known for more than 40 years, as far as we know this is the first non-trivial search-to-decision reduction in the context of GpI. Our main technique for (1), (3), and (4) is a linear-algebraic analogue of the classical graph coloring gadget, which was used to obtain the search-to-decision reduction for GI. This gadget construction may be of independent interest and utility. The technique for (2) gives a method for encoding an arbitrary tensor into an algebra.
We investigate the power of graph isomorphism algorithms based on algebraic reasoning techniques like Grobner basis computation. The idea of these algorithms is to encode two graphs into a system of equations that are satisfiable if and only if if the graphs are isomorphic, and then to (try to) decide satisfiability of the system using, for example, the Grobner basis algorithm. In some cases this can be done in polynomial time, in particular, if the equations admit a bounded degree refutation in an algebraic proof systems such as Nullstellensatz or polynomial calculus. We prove linear lower bounds on the polynomial calculus degree over all fields of characteristic different from 2 and also linear lower bounds for the degree of Positivstellensatz calculus derivations. We compare this approach to recently studied linear and semidefinite programming approaches to isomorphism testing, which are known to be related to the combinatorial Weisfeiler-Lehman algorithm. We exactly characterise the power of the Weisfeiler-Lehman algorithm in terms of an algebraic proof system that lies between degree-k Nullstellensatz and degree-k polynomial calculus.
Let $G$ be a graph on $n$ vertices and $mathrm{STAB}_k(G)$ be the convex hull of characteristic vectors of its independent sets of size at most $k$. We study extension complexity of $mathrm{STAB}_k(G)$ with respect to a fixed parameter $k$ (analogously to, e.g., parameterized computational complexity of problems). We show that for graphs $G$ from a class of bounded expansion it holds that $mathrm{xc}(mathrm{STAB}_k(G))leqslant mathcal{O}(f(k)cdot n)$ where the function $f$ depends only on the class. This result can be extended in a simple way to a wide range of similarly defined graph polytopes. In case of general graphs we show that there is {em no function $f$} such that, for all values of the parameter $k$ and for all graphs on $n$ vertices, the extension complexity of $mathrm{STAB}_k(G)$ is at most $f(k)cdot n^{mathcal{O}(1)}.$ While such results are not surprising since it is known that optimizing over $mathrm{STAB}_k(G)$ is $FPT$ for graphs of bounded expansion and $W[1]$-hard in general, they are also not trivial and in both cases stronger than the corresponding computational complexity results.