Do you want to publish a course? Click here

Trace norm regularization and faster inference for embedded speech recognition RNNs

71   0   0.0 ( 0 )
 Added by Markus Kliegl
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We propose and evaluate new techniques for compressing and speeding up dense matrix multiplications as found in the fully connected and recurrent layers of neural networks for embedded large vocabulary continuous speech recognition (LVCSR). For compression, we introduce and study a trace norm regularization technique for training low rank factor



rate research

Read More

Using the $ell_1$-norm to regularize the estimation of the parameter vector of a linear model leads to an unstable estimator when covariates are highly correlated. In this paper, we introduce a new penalty function which takes into account the correlation of the design matrix to stabilize the estimation. This norm, called the trace Lasso, uses the trace norm, which is a convex surrogate of the rank, of the selected covariates as the criterion of model complexity. We analyze the properties of our norm, describe an optimization algorithm based on reweighted least-squares, and illustrate the behavior of this norm on synthetic data, showing that it is more adapted to strong correlations than competing methods such as the elastic net.
Recurrent neural networks (RNNs) based automatic speech recognition has nowadays become prevalent on mobile devices such as smart phones. However, previous RNN compression techniques either suffer from hardware performance overhead due to irregularity or significant accuracy loss due to the preserved regularity for hardware friendliness. In this work, we propose RTMobile that leverages both a novel block-based pruning approach and compiler optimizations to accelerate RNN inference on mobile devices. Our proposed RTMobile is the first work that can achieve real-time RNN inference on mobile platforms. Experimental results demonstrate that RTMobile can significantly outperform existing RNN hardware acceleration methods in terms of inference accuracy and time. Compared with prior work on FPGA, RTMobile using Adreno 640 embedded GPU on GRU can improve the energy-efficiency by about 40$times$ while maintaining the same inference time.
343 - Ke Wang , Junbo Zhang , Sining Sun 2018
We investigate the use of generative adversarial networks (GANs) in speech dereverberation for robust speech recognition. GANs have been recently studied for speech enhancement to remove additive noises, but there still lacks of a work to examine their ability in speech dereverberation and the advantages of using GANs have not been fully established. In this paper, we provide deep investigations in the use of GAN-based dereverberation front-end in ASR. First, we study the effectiveness of different dereverberation networks (the generator in GAN) and find that LSTM leads a significant improvement as compared with feed-forward DNN and CNN in our dataset. Second, further adding residual connections in the deep LSTMs can boost the performance as well. Finally, we find that, for the success of GAN, it is important to update the generator and the discriminator using the same mini-batch data during training. Moreover, using reverberant spectrogram as a condition to discriminator, as suggested in previous studies, may degrade the performance. In summary, our GAN-based dereverberation front-end achieves 14%-19% relative CER reduction as compared to the baseline DNN dereverberation network when tested on a strong multi-condition training acoustic model.
Varying data augmentation policies and regularization over the course of optimization has led to performance improvements over using fixed values. We show that population based training is a useful tool to continuously search those hyperparameters, within a fixed budget. This greatly simplifies the experimental burden and computational cost of finding such optimal schedules. We experiment in speech recognition by optimizing SpecAugment this way, as well as dropout. It compares favorably to a baseline that does not change those hyperparameters over the course of training, with an 8% relative WER improvement. We obtain 5.18% word error rate on LibriSpeechs test-other.
Following the success of the 1st, 2nd, 3rd, 4th and 5th CHiME challenges we organize the 6th CHiME Speech Separation and Recognition Challenge (CHiME-6). The new challenge revisits the previous CHiME-5 challenge and further considers the problem of distant multi-microphone conversational speech diarization and recognition in everyday home environments. Speech material is the same as the previous CHiME-5 recordings except for accurate array synchronization. The material was elicited using a dinner party scenario with efforts taken to capture data that is representative of natural conversational speech. This paper provides a baseline description of the CHiME-6 challenge for both segmented multispeaker speech recognition (Track 1) and unsegmented multispeaker speech recognition (Track 2). Of note, Track 2 is the first challenge activity in the community to tackle an unsegmented multispeaker speech recognition scenario with a complete set of reproducible open source baselines providing speech enhancement, speaker diarization, and speech recognition modules.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا