Do you want to publish a course? Click here

On the nearly smooth complex spaces

63   0   0.0 ( 0 )
 Added by Daniel Barlet
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a class of normal complex spaces having only mild sin-gularities (close to quotient singularities) for which we generalize the notion of a (analytic) fundamental class for an analytic cycle and also the notion of a relative fundamental class for an analytic family of cycles. We also generalize to these spaces the geometric intersection theory for analytic cycles with rational positive coefficients and show that it behaves well with respect to analytic families of cycles. We prove that this intersection theory has most of the usual properties of the standard geometric intersection theory on complex manifolds, but with the exception that the intersection cycle of two cycles with positive integral coefficients that intersect properly may have rational coefficients. AMS classification. 32 C 20-32 C 25-32 C 36.



rate research

Read More

358 - Tommaso de Fernex 2018
Building on work of Du, Gao, and Yau, we give a characterization of smooth solutions, up to normalization, of the complex Plateau problem for strongly pseudoconvex Calabi--Yau CR manifolds of dimension $2n-1 ge 5$ and in the hypersurface case when $n=2$. The latter case was completely solved by Yau for $n ge 3$ but only partially solved by Du and Yau for $n=2$. As an application, we determine the existence of a link-theoretic invariant of normal isolated singularities that distinguishes smooth points from singular ones.
We prove that two smooth families of 2-connected domains in $cc$ are smoothly equivalent if they are equivalent under a possibly discontinuous family of biholomorphisms. We construct, for $m geq 3$, two smooth families of smoothly bounded $m$-connected domains in $cc$, and for $ngeq2$, two families of strictly pseudoconvex domains in $cc^n$, that are equivalent under discontinuous families of biholomorphisms but not under any continuous family of biholomorphisms. Finally, we give sufficient conditions for the smooth equivalence of two smooth families of domains.
This note establishes smooth approximation from above for J-plurisubharmonic functions on an almost complex manifold (X,J). The following theorem is proved. Suppose X is J-pseudoconvex, i.e., X admits a smooth strictly J-plurisubharmonic exhaustion function. Let u be an (upper semi-continuous) J-plurisubharmonic function on X. Then there exists a sequence {u_j} of smooth, strictly J-plurisubharmonic functions point-wise decreasing down to u. On any almost complex manifold (X,J) each point has a fundamental neighborhood system of J-pseudoconvex domains, and so the theorem above establishes local smooth approximation on X. This result was proved in complex dimension 2 by the third author, who also showed that the result would hold in general dimensions if a parallel result for continuous approximation were known. This paper establishes the required step by solving the obstacle problem.
The Patterson-Sullivan construction is proved almost surely to recover a Bergman function from its values on a random discrete subset sampled with the determinantal point process induced by the Bergman kernel on the unit ball $mathbb{D}_d$ in $mathbb{C}^d$. For super-critical weighted Bergman spaces, the interpolation is uniform when the functions range over the unit ball of the weighted Bergman space. As main results, we obtain a necessary and sufficient condition for interpolation of a fixed pluriharmonic function in the complex hyperbolic space of arbitrary dimension (cf. Theorem 1.4 and Theorem 4.11); optimal simultaneous uniform interpolation for weighted Bergman spaces (cf. Theorem 1.8, Proposition 1.9 and Theorem 4.13); strong simultaneous uniform interpolation for weighted harmonic Hardy spaces (cf. Theorem 1.11 and Theorem 4.15); and establish the impossibility of the uniform simultaneous interpolation for the Bergman space $A^2(mathbb{D}_d)$ on $mathbb{D}_d$ (cf. Theorem 1.12 and Theorem 6.7).
This paper is a continuation of our article (European J. Math., https://doi.org/10.1007/s40879-020-00419-8). The notion of a poor complex compact manifold was introduced there and the group $Aut(X)$ for a $P^1$-bundle over such a manifold was proven to be very Jordan. We call a group $G$ very Jordan if it contains a normal abelian subgroup $G_0$ such that the orders of finite subgroups of the quotient $G/G_0$ are bounded by a constant depending on $G$ only. In this paper we provide explicit examples of infinite families of poor manifolds of any complex dimension, namely simple tori of algebraic dimension zero. Then we consider a non-trivial holomorphic $P^1$-bundle $(X,p,Y)$ over a non-uniruled complex compact Kaehler manifold $Y$. We prove that $Aut(X)$ is very Jordan provided some additional conditions on the set of sections of $p$ are met. Applications to $P^1$-bundles over non-algebraic complex tori are given.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا