Do you want to publish a course? Click here

The Dawn of the Post-Naturalness Era

55   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In an imaginary conversation with Guido Altarelli, I express my views on the status of particle physics beyond the Standard Model and its future prospects.



rate research

Read More

We reanalyse the ratio $varepsilon/varepsilon$ in the Standard Model (SM) using most recent hadronic matrix elements from the RBC-UKQCD collaboration in combination with most important NNLO QCD corrections to electroweak penguin contributions and the isospin-breaking corrections. We illustrate the importance of the latter by using their latest estimate from chiral perturbation theory (ChPT) based on the $octet$ approximation for lowest-lying mesons and a very recent estimate in the $nonet$ scheme that takes into account the contribution of $eta_0$. We find $(varepsilon/varepsilon)^{(8)}_text{SM} = (17.4 pm 6.1) times 10^{-4}$ and $(varepsilon/varepsilon)^{(9)}_text{SM} = (13.9 pm 5.2) times 10^{-4}$, respectively. Despite a very good agreement with the measured value $(varepsilon/varepsilon)_text{exp} = (16.6 pm 2.3) times 10^{-4}$, the large error in $(varepsilon/varepsilon)_text{SM}$ still leaves room for significant new physics (BSM) contributions to this ratio. We update the 2018 master formula for $(varepsilon/varepsilon)_text{BSM}$ valid in any extension beyond the SM without additional light degrees of freedom. We provide new values of the penguin parameters $B_6^{(1/2)}(mu)$ and $B_8^{(3/2)}(mu)$ at the $mu$-scales used by the RBC-UKQCD collaboration and at lower scales $mathcal{O}(1,text{GeV})$ used by ChPT and DQCD. We present semi-analytic formulae for $(varepsilon/varepsilon)_text{SM}$ in terms of these parameters and $hat{Omega}_text{eff}$ that summarizes isospin-breaking corrections to this ratio. We stress the importance of lattice calculations of the $mathcal{O}(alpha_text{em})$ contributions to the hadronic matrix elements necessary for the removal of renormalization scheme dependence at $mathcal{O}(alpha_text{em})$ in the present analyses of $varepsilon/varepsilon$.
61 - M.J.Tannenbaum 2016
The search for the left-handed $W^{pm}$ bosons, the proposed quanta of the weak interaction, and the Higgs boson, which spontaneously breaks the symmetry of unification of electromagnetic and weak interactions, has driven elementary-particle physics research from the time that I entered college to the present and has led to many unexpected and exciting discoveries which revolutionized our view of subnuclear physics over that period. In this article I describe how these searches and discoveries have intertwined with my own career.
We review recent progress in the determination of the parton distribution functions (PDFs) of the proton, with emphasis on the applications for precision phenomenology at the Large Hadron Collider (LHC). First of all, we introduce the general theoretical framework underlying the global QCD analysis of the quark and gluon internal structure of protons. We then present a detailed overview of the hard-scattering measurements, and the corresponding theory predictions, that are used in state-of-the-art PDF fits. We emphasize here the role that higher-order QCD and electroweak corrections play in the description of recent high-precision collider data. We present the methodology used to extract PDFs in global analyses, including the PDF parametrization strategy and the definition and propagation of PDF uncertainties. Then we review and compare the most recent releases from the various PDF fitting collaborations, highlighting their differences and similarities. We discuss the role that QED corrections and photon-initiated contributions play in modern PDF analysis. We provide representative examples of the implications of PDF fits for high-precision LHC phenomenological applications, such as Higgs coupling measurements and searches for high-mass New Physics resonances. We conclude this report by discussing some selected topics relevant for the future of PDF determinations, including the treatment of theoretical uncertainties, the connection with lattice QCD calculations, and the role of PDFs at future high-energy colliders beyond the LHC.
The angle $gamma$ of the Cabibbo--Kobayashi--Maskawa unitarity triangle is a benchmark parameter of the Standard Model of particle physics. A method to determine $gamma$ from $B^{pm} to D K^{pm}$ with subsequent $D to K_{rm S}^0pi^+pi^-$ or similar multibody decays has been proven to provide good sensitivity. We review the first discussions on the use of this technique, and its impact subsequently. We propose that this approach should be referred to as the BPGGSZ method.
For direct CP-violation in $Ktopipi$ decays, the usual isospin-breaking effects at the percent level are amplified by the dynamics behind the $Delta I=1/2$ rule and conventionally encoded in $Omega_{rm IB}$ parameters. The updated prediction $Omega_{rm IB}^{(8)}=(15.9pm 8.2)times 10^{-2}$ of the Chiral Perturbation Theory for the strong isospin-breaking due to $pi_3-eta_8$ mixing confirms such a tendency but is quite sensitive to the theoretical input value of the low-energy constant corresponding to the flavour-singlet $eta_0$ exchange contribution in this truncated octet scheme. We rather exploit the phenomenological $eta_8-eta_0$ mixing as a probe for the non-negligible flavour-singlet component of the physical $eta$ pole to find $Omega_{rm IB}^{(9)}=(35pm7)times 10^{-2}$ in a complete nonet scheme. A large central value in the nonet scheme is thus substituted for a large uncertainty in the octet one. Including the experimental $pi^+-pi^0$ mass difference as the dominant electromagnetic isospin-breaking, we obtain for the effective parameter entering the ratio $epsilon/epsilon$ an improved result $hatOmega_{rm eff}^{(9)}=(29pm7)times 10^{-2}$ to be compared with $hatOmega_{rm eff}^{(8)}=(17pm9)times 10^{-2}$ used in recent analyses of $epsilon/epsilon$. Accordingly, we get a reduction from $(epsilon/epsilon)_{rm SM}^{(8)}=(17.4pm 6.1)times 10^{-4}$ to $(epsilon/epsilon)_{rm SM}^{(9)}=(13.9pm 5.2)times 10^{-4}$ and thereby an effective suppression of $(epsilon/epsilon)_{rm SM}$ by isospin-breaking corrections as large as $40%$ relative to the recent RBC-UKQCD value.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا