Do you want to publish a course? Click here

Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop

148   0   0.0 ( 0 )
 Added by Shota Komatsu
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We study three-point functions of operators on the $1/2$ BPS Wilson loop in planar $mathcal{N}=4$ super Yang-Mills theory. The operators we consider are defect changing operators, which change the scalar coupled to the Wilson loop. We first perform the computation at two loops in general set-ups, and then study a special scaling limit called the ladders limit, in which the spectrum is known to be described by a quantum mechanics with the SL(2,$mathbb{R}$) symmetry. In this limit, we resum the Feynman diagrams using the Schwinger-Dyson equation and determine the structure constants at all order in the rescaled coupling constant. Besides providing an interesting solvable example of defect conformal field theories, our result gives invaluable data for the integrability-based approach to the structure constants.



rate research

Read More

We study operator insertions into the $1/2$ BPS Wilson loop in ${cal N}=4$ SYM theory and determine their two-point coefficients, anomalous dimensions and structure constants. The calculation is done for the first few lowest dimension insertions and relies on known results for the expectation value of a smooth Wilson loop. In addition to the particular coefficients that we calculate, our study elucidates the connection between deformations of the line and operator insertions and between the vacuum expectation value of the line and the CFT data of the insertions.
We consider conformal N=2 super Yang-Mills theories with gauge group SU(N) and Nf=2N fundamental hypermultiplets in presence of a circular 1/2-BPS Wilson loop. It is natural to conjecture that the matrix model which describes the expectation value of this system also encodes the one-point functions of chiral scalar operators in presence of the Wilson loop. We obtain evidence of this conjecture by successfully comparing, at finite N and at the two-loop order, the one-point functions computed in field theory with the vacuum expectation values of the corresponding normal-ordered operators in the matrix model. For the part of these expressions with transcendentality zeta(3), we also obtain results in the large-N limit that are exact in the t Hooft coupling lambda.
As a continuation of the study (in arXiv:2102.07696 and arXiv:2104.12625) of strong-coupling expansion of non-planar corrections in $mathcal N=2$ 4d superconformal models we consider two special theories with gauge groups $SU(N)$ and $Sp(2N)$. They contain $N$-independent numbers of hypermultiplets in rank 2 antisymmetric and fundamental representations and are planar-equivalent to the corresponding $mathcal N=4$ SYM theories. These $mathcal N=2$ theories can be realised on a system of $N$ D3-branes with a finite number of D7-branes and O7-plane; the dual string theories should be particular orientifolds of $AdS_5times S^5$ superstring. Starting with the localization matrix model representation for the $mathcal N=2$ partition function on $S^4$ we find exact differential relations between the $1/N$ terms in the corresponding free energy $F$ and the $frac{1}{2}$-BPS Wilson loop expectation value $langlemathcal Wrangle$ and also compute their large t Hooft coupling ($lambda gg 1$) expansions. The structure of these expansions is different from the previously studied models without fundamental hypermultiplets. In the more tractable $Sp(2N)$ case we find an exact resummed expression for the leading strong coupling terms at each order in the $1/N$ expansion. We also determine the exponentially suppressed at large $lambda$ contributions to the non-planar corrections to $F$ and $langlemathcal Wrangle$ and comment on their resurgence properties. We discuss dual string theory interpretation of these strong coupling expansions.
Efficient and powerful approaches to the computation of correlation functions involving determinant, sub-determinant and permanent operators, as well as traces, have recently been developed in the setting of ${cal N}=4$ super Yang-Mills theory. In this article we show that they can be extended to ABJM and ABJ theory. After making use of a novel identity which follows from character orthogonality, an integral representation of certain projection operators used to define Schur polynomials is given. This integral representation provides an effective description of the correlation functions of interest. The resulting effective descriptions have ${1over N}$ as the loop counting parameter, strongly suggesting their relevance for holography.
We perform exact computations of correlation functions of 1/2-BPS local operators and protected operator insertions on the 1/8-BPS Wilson loop in $mathcal{N}=4$ SYM. This generalizes the results of our previous paper arXiv:1802.05201, which employs supersymmetric localization, OPE and the Gram-Schmidt process. In particular, we conduct a detailed analysis for the 1/2-BPS circular (or straight) Wilson loop in the planar limit, which defines an interesting nontrivial defect CFT. We compute its bulk-defect structure constants at finite t Hooft coupling, and present simple integral expressions in terms of the $Q$-functions that appear in the Quantum Spectral Curve---a formalism originally introduced for the computation of the operator spectrum. The results at strong coupling are found to be in precise agreement with the holographic calculation based on perturbation theory around the AdS$_2$ string worldsheet, where they correspond to correlation functions of open string fluctuations and closed string vertex operators inserted on the worldsheet. Along the way, we clarify several aspects of the Gram-Schmidt analysis which were not addressed in the previous paper. In particular, we clarify the role played by the multi-trace operators at the non-planar level, and confirm its importance by computing the non-planar correction to the defect two-point function. We also provide a formula for the first non-planar correction to the defect correlators in terms of the Quantum Spectral Curve, which suggests the potential applicability of the formalism to the non-planar correlation functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا