No Arabic abstract
We compute the spectral distortions of the Cosmic Microwave Background (CMB) polarization induced by non-linear effects in the Compton interactions between CMB photons and cold intergalactic electrons. This signal is of the $y$-type and is dominated by contributions arising from the reionized era. We stress that it is not shadowed by the thermal SZ effect which has no equivalent for polarization. We decompose its angular dependence into $E$- and $B$-modes, and we calculate the corresponding power spectra, both exactly and using a suitable Limber approximation that allows a simpler numerical evaluation. We find that $B$-modes are of the same order of magnitude as $E$-modes. Both spectra are relatively flat, peaking around $ell=280$, and their overall amplitude is directly related to the optical depth to reionization. Moreover, we find this effect to be one order of magnitude larger than the non-linear kinetic Sunyaev-Zeldovich effect in galaxy clusters. Finally, we discuss how to improve the detectability of our signal by cross-correlating it with other quantities sourced by the flow of intergalactic electrons.
If primordial black holes (PBHs) form directly from inhomogeneities in the early Universe, then the number in the mass range $10^5 -10^{12}M_{odot}$ is severely constrained by upper limits to the $mu$ distortion in the cosmic microwave background (CMB). This is because inhomogeneities on these scales will be dissipated by Silk damping in the redshift interval $5times 10^4lesssim zlesssim2times 10^6$. If the primordial fluctuations on a given mass scale have a Gaussian distribution and PBHs form on the high-$sigma$ tail, as in the simplest scenarios, then the $mu$ constraints exclude PBHs in this mass range from playing any interesting cosmological role. Only if the fluctuations are highly non-Gaussian, or form through some mechanism unrelated to the primordial fluctuations, can this conclusion be obviated.
STPpol, POLARBEAR and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the components due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications of their analysis of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational waves components, also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Although in principle our analysis would lead also to new constraints on CPR, in practice these can only be given on its fluctuations <{delta}{alpha}^2>, since constraints on its mean angle are inhibited by the de-rotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on theoretical model) gives constraint <{delta}{alpha}^2>^1/2 < 27.3 mrad (1.56{deg}) with r = 0.194 pm 0.033. These results show that the present data are consistent with no CPR detection and the constraint on CPR fluctuation is about 1.5{deg}. This method of constraining the cosmic polarization rotation is new, is complementary to previous tests, which use the radio and optical/UV polarization of radio galaxies and the CMB E-mode polarization, and adds a new constraint for the sky areas observed by SPTpol, POLARBEAR and BICEP2.
Voyage 2050 White Paper highlighting the unique science opportunities using spectral distortions of the cosmic microwave background (CMB). CMB spectral distortions probe many processes throughout the history of the Universe. Precision spectroscopy, possible with existing technology, would provide key tests for processes expected within the cosmological standard model and open an enormous discovery space to new physics. This offers unique scientific opportunities for furthering our understanding of inflation, recombination, reionization and structure formation as well as dark matter and particle physics. A dedicated experimental approach could open this new window to the early Universe in the decades to come, allowing us to turn the long-standing upper distortion limits obtained with COBE/FIRAS some 25 years ago into clear detections of the expected standard distortion signals.
Since the measurements of COBE/FIRAS in the mid-90s we know that the energy spectrum of the cosmic microwave background (CMB) is extremely close to that of a perfect blackbody at an average temperature T0~2.726K. However, a number of early-universe processes are expected to create CMB spectral distortions - departures of the average CMB energy spectrum from a blackbody - at a level that is within reach of present-day technology. This provides strong motivation to study the physics of CMB spectral distortions and ask what these small signals might be able to tell us about the Universe we live in. In this lecture, I will give a broad-brush overview of recent theoretical and experimental developments, explaining why future spectroscopic measurements of the CMB will open an unexplored new window to early-universe and particle physics. I will give an introduction about the different types of distortions, how they evolve and thermalize and highlight some of the physical processes that can cause them. I hope to be able to convince you that CMB spectral distortions could open an exciting new path forward in CMB cosmology, which is complementary to planned and ongoing searches for primordial B-mode polarization signals. Spectral distortions should thus be considered very seriously as part of the activities in the next decades.
Many inflation models predict that primordial density perturbations have a nonzero three-point correlation function, or bispectrum in Fourier space. Of the several possibilities for this bispectrum, the most commmon is the local-model bispectrum, which can be described as a spatial modulation of the small-scale (large-wavenumber) power spectrum by long-wavelength density fluctuations. While the local model predicts this spatial modulation to be scale-independent, many variants have some scale-dependence. Here we note that this scale dependence can be probed with measurements of frequency-spectrum distortions in the cosmic microwave background (CMB), in particular highlighting Compton-$y$ distortions. Dissipation of primordial perturbations with wavenumbers $50,{rm Mpc}^{-1} lesssim k lesssim 10^4,{rm Mpc}^{-1}$ give rise to chemical-potential ($mu$) distortions, while those with wavenumbers $1,{rm Mpc}^{-1} lesssim k lesssim 50,{rm Mpc}^{-1}$ give rise to Compton-$y$ distortions. With local-model non-Gaussianity, the distortions induced by this dissipation can be distinguished from those due to other sources via their cross-correlation with the CMB temperature $T$. We show that the relative strengths of the $mu T$ and $yT$ correlations thus probe the scale-dependence of non-Gaussianity and estimate the magnitude of possible signals relative to sensitivities of future experiments. We discuss the complementarity of these measurements with other probes of squeezed-limit non-Gaussianity.