No Arabic abstract
Thermodynamics and information theory have been intimately related since the times of Maxwell and Boltzmann. Recently it was shown that the dissipated work in an arbitrary non-equilibrium process is related to the R{e}nyi divergences between two states along the forward and reversed dynamics. Here we show that the relation between dissipated work and Renyi divergences generalizes to $mathcal{PT}$-symmetric quantum mechanics with unbroken $mathcal{PT}$ symmetry. In the regime of broken $mathcal{PT}$ symmetry, the relation between dissipated work and Renyi divergences does not hold as the norm is not preserved during the dynamics. This finding is illustrated for an experimentally relevant system of two-coupled cavities.
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extend to $mathcal{PT}$-symmetric quantum system with unbroken $mathcal{PT}$ symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory and Onsager reciprocal relations for the $mathcal{PT}$-symmetric quantum system are recovered as special cases of the universal quantum work relation in $mathcal{PT}$-symmetric quantum system. In the regime of broken $mathcal{PT}$ symmetry, the universal quantum work relation does not hold as the norm is not preserved during the dynamics.
In this work, we establish an exact relation which connects the heat exchange between two systems initialized in their thermodynamic equilibrium states at different temperatures and the R{e}nyi divergences between the initial thermodynamic equilibrium state and the final non-equilibrium state of the total system. The relation tells us that the various moments of the heat statistics are determined by the Renyi divergences between the initial equilibrium state and the final non-equilibrium state of the global system. In particular the average heat exchange is quantified by the relative entropy between the initial equilibrium state and the final non-equilibrium state of the global system. The relation is applicable to both finite classical systems and finite quantum systems.
A series of geometric concepts are formulated for $mathcal{PT}$-symmetric quantum mechanics and they are further unified into one entity, i.e., an extended quantum geometric tensor (QGT). The imaginary part of the extended QGT gives a Berry curvature whereas the real part induces a metric tensor on systems parameter manifold. This results in a unified conceptual framework to understand and explore physical properties of $mathcal{PT}$-symmetric systems from a geometric perspective. To illustrate the usefulness of the extended QGT, we show how its real part, i.e., the metric tensor, can be exploited as a tool to detect quantum phase transitions as well as spontaneous $mathcal{PT}$-symmetry breaking in $mathcal{PT}$-symmetric systems.
Time-dependent $mathcal{PT}$-symmetric quantum mechanics is featured by a varying inner-product metric and has stimulated a number of interesting studies beyond conventional quantum mechanics. In this paper, we explore geometric aspects of time-dependent $mathcal{PT}$-symmetric quantum mechanics. We not only find a geometric phase factor emerging naturally from cyclic evolutions of $mathcal{PT}$-symmetric systems, but also formulate a series of differential geometry concepts, including connection, curvature, parallel transport, metric tensor, and quantum geometric tensor. Our findings constitute a useful, perhaps indispensible, tool to tackle physical problems involving $mathcal{PT}$-symmetric systems with time-varying systems parameters. To exemplify the application of our findings, we show that the unconventional geometrical phase [Phys. Rev. Lett. 91, 187902 (2003)], consisting of a geometric phase and a dynamical phase proportional to the geometric phase, can be expressed as a single geometric phase identified in this work.
$mathcal{PT}$-symmetric quantum mechanics has been considered an important theoretical framework for understanding physical phenomena in $mathcal{PT}$-symmetric systems, with a number of $mathcal{PT}$-symmetry related applications. This line of research was made possible by the introduction of a time-independent metric operator to redefine the inner product of a Hilbert space. To treat the dynamics of generic non-Hermitian systems under equal footing, we advocate in this work the use of a time-dependent metric operator for the inner-product between time-evolving states. This treatment makes it possible to always interpret the dynamics of arbitrary (finite-dimensional) non-Hermitian systems in the framework of time-dependent $mathcal{PT}$-symmetric quantum mechanics, with unitary time evolution, real eigenvalues of an energy observable, and quantum measurement postulate all restored. Our work sheds new lights on generic non-Hermitian systems and spontaneous $mathcal{PT}$-symmetry breaking in particular. We also illustrate possible applications of our formulation with well-known examples in quantum thermodynamics.