Do you want to publish a course? Click here

Differential geometry of time-dependent $mathcal{PT}$-symmetric quantum mechanics

137   0   0.0 ( 0 )
 Added by Jiangbin Gong Prof.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time-dependent $mathcal{PT}$-symmetric quantum mechanics is featured by a varying inner-product metric and has stimulated a number of interesting studies beyond conventional quantum mechanics. In this paper, we explore geometric aspects of time-dependent $mathcal{PT}$-symmetric quantum mechanics. We not only find a geometric phase factor emerging naturally from cyclic evolutions of $mathcal{PT}$-symmetric systems, but also formulate a series of differential geometry concepts, including connection, curvature, parallel transport, metric tensor, and quantum geometric tensor. Our findings constitute a useful, perhaps indispensible, tool to tackle physical problems involving $mathcal{PT}$-symmetric systems with time-varying systems parameters. To exemplify the application of our findings, we show that the unconventional geometrical phase [Phys. Rev. Lett. 91, 187902 (2003)], consisting of a geometric phase and a dynamical phase proportional to the geometric phase, can be expressed as a single geometric phase identified in this work.



rate research

Read More

201 - Da-Jian Zhang , Qing-hai Wang , 2019
$mathcal{PT}$-symmetric quantum mechanics has been considered an important theoretical framework for understanding physical phenomena in $mathcal{PT}$-symmetric systems, with a number of $mathcal{PT}$-symmetry related applications. This line of research was made possible by the introduction of a time-independent metric operator to redefine the inner product of a Hilbert space. To treat the dynamics of generic non-Hermitian systems under equal footing, we advocate in this work the use of a time-dependent metric operator for the inner-product between time-evolving states. This treatment makes it possible to always interpret the dynamics of arbitrary (finite-dimensional) non-Hermitian systems in the framework of time-dependent $mathcal{PT}$-symmetric quantum mechanics, with unitary time evolution, real eigenvalues of an energy observable, and quantum measurement postulate all restored. Our work sheds new lights on generic non-Hermitian systems and spontaneous $mathcal{PT}$-symmetry breaking in particular. We also illustrate possible applications of our formulation with well-known examples in quantum thermodynamics.
A series of geometric concepts are formulated for $mathcal{PT}$-symmetric quantum mechanics and they are further unified into one entity, i.e., an extended quantum geometric tensor (QGT). The imaginary part of the extended QGT gives a Berry curvature whereas the real part induces a metric tensor on systems parameter manifold. This results in a unified conceptual framework to understand and explore physical properties of $mathcal{PT}$-symmetric systems from a geometric perspective. To illustrate the usefulness of the extended QGT, we show how its real part, i.e., the metric tensor, can be exploited as a tool to detect quantum phase transitions as well as spontaneous $mathcal{PT}$-symmetry breaking in $mathcal{PT}$-symmetric systems.
Recently, much research has been carried out on Hamiltonians that are not Hermitian but are symmetric under space-time reflection, that is, Hamiltonians that exhibit PT symmetry. Investigations of the Sturm-Liouville eigenvalue problem associated with such Hamiltonians have shown that in many cases the entire energy spectrum is real and positive and that the eigenfunctions form an orthogonal and complete basis. Furthermore, the quantum theories determined by such Hamiltonians have been shown to be consistent in the sense that the probabilities are positive and the dynamical trajectories are unitary. However, the geometrical structures that underlie quantum theories formulated in terms of such Hamiltonians have hitherto not been fully understood. This paper studies in detail the geometric properties of a Hilbert space endowed with a parity structure and analyses the characteristics of a PT-symmetric Hamiltonian and its eigenstates. A canonical relationship between a PT-symmetric operator and a Hermitian operator is established. It is shown that the quadratic form corresponding to the parity operator, in particular, gives rise to a natural partition of the Hilbert space into two halves corresponding to states having positive and negative PT norm. The indefiniteness of the norm can be circumvented by introducing a symmetry operator C that defines a positive definite inner product by means of a CPT conjugation operation.
Over the past decade, non-Hermitian, $mathcal{PT}$-symmetric Hamiltonians have been investigated as candidates for both, a fundamental, unitary, quantum theory, and open systems with a non-unitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the $mathcal{PT}$ (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of $mathcal{PT}$-symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave function phases at adjacent sites occurs in the $mathcal{PT}$-symmetry broken region. Our results pave the way towards understanding the physically observable implications of time-invariants in the non-unitary dynamics produced by $mathcal{PT}$-symmetric Hamiltonians.
We theoretically study the dynamics of typical optomechanical systems, consisting of a passive optical mode and an active mechanical mode, in the $mathcal{PT}$- and broken-$mathcal{PT}$-symmetric regimes. By fully analytical treatments for the dynamics of the average displacement and particle numbers, we reveal the phase diagram under different conditions and the various regimes of both $mathcal{PT}$-symmetry and stability of the system. We find that by appropriately tuning either mechanical gain or optomechanical coupling, both phase transitions of the $mathcal{PT}$-symmetry and stability of the system can be flexibly controlled. As a result, the dynamical behaviors of the average displacement, photons, and phonons are radically changed in different regimes. Our study shows that $mathcal{PT}$-symmetric optomechanical devices can serve as a powerful tool for the manipulation of mechanical motion, photons, and phonons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا