The simulation of electrical discharges has been attracting a great deal of attention. In such simulations, the electric field computation dominates the computational time. In this paper, we propose a fast tree algorithm that helps to reduce the time complexity from $O(N^2)$ (from using direct summation) to $O(Nlog N)$. The implementation details are discussed and the time complexity is analyzed. A rigorous error estimation shows the error of the tree algorithm decays exponentially with the number of truncation terms and can be controlled adaptively. Numerical examples are presented to validate the accuracy and efficiency of the algorithm.
We present the AMPS algorithm, a finite element solution method that combines principal submatrix updates and Schur complement techniques, well-suited for interactive simulations of deformation and cutting of finite element meshes. Our approach features real-time solutions to the updated stiffness matrix systems to account for interactive changes in mesh connectivity and boundary conditions. Updates are accomplished by an augmented matrix formulation of the stiffness equations to maintain its consistency with changes to the underlying model without refactorization at each timestep. As changes accumulate over multiple simulation timesteps, the augmented solution algorithm enables tens or hundreds of updates per second. Acceleration schemes that exploit sparsity, memoization and parallelization lead to the updates being computed in real-time. The complexity analysis and experimental results for this method demonstrate that it scales linearly with the problem size. Results for cutting and deformation of 3D elastic models are reported for meshes with node counts up to 50,000, and involve models of astigmatism surgery and the brain.
Blockchain has received tremendous attention in non-monetary applications including the Internet of Things (IoT) due to its salient features including decentralization, security, auditability, and anonymity. Most conventional blockchains rely on computationally expensive consensus algorithms, have limited throughput, and high transaction delays. In this paper, we propose tree-chain a scalable fast blockchain instantiation that introduces two levels of randomization among the validators: i) transaction level where the validator of each transaction is selected randomly based on the most significant characters of the hash function output (known as consensus code), and ii) blockchain level where validator is randomly allocated to a particular consensus code based on the hash of their public key. Tree-chain introduces parallel chain branches where each validator commits the corresponding transactions in a unique ledger. Implementation results show that tree-chain is runnable on low resource devices and incurs low processing overhead, achieving near real-time transaction settlement.
The advent of a new generation of large-scale galaxy surveys is pushing cosmological numerical simulations in an uncharted territory. The simultaneous requirements of high resolution and very large volume pose serious technical challenges, due to their computational and data storage demand. In this paper, we present a novel approach dubbed Dynamic Zoom Simulations -- or DZS -- developed to tackle these issues. Our method is tailored to the production of lightcone outputs from N-body numerical simulations, which allow for a more efficient storage and post-processing compared to standard comoving snapshots, and more directly mimic the format of survey data. In DZS, the resolution of the simulation is dynamically decreased outside the lightcone surface, reducing the computational work load, while simultaneously preserving the accuracy inside the lightcone and the large-scale gravitational field. We show that our approach can achieve virtually identical results to traditional simulations at half of the computational cost for our largest box. We also forecast this speedup to increase up to a factor of 5 for larger and/or higher-resolution simulations. We assess the accuracy of the numerical integration by comparing pairs of identical simulations run with and without DZS. Deviations in the lightcone halo mass function, in the sky-projected lightcone, and in the 3D matter lightcone always remain below 0.1%. In summary, our results indicate that the DZS technique may provide a highly-valuable tool to address the technical challenges that will characterise the next generation of large-scale cosmological simulations.
Transcriptome assembly from RNA-Seq reads is an active area of bioinformatics research. The ever-declining cost and the increasing depth of RNA-Seq have provided unprecedented opportunities to better identify expressed transcripts. However, the nonlinear transcript structures and the ultra-high throughput of RNA-Seq reads pose significant algorithmic and computational challenges to the existing transcriptome assembly approaches, either reference-guided or de novo. While reference-guided approaches offer good sensitivity, they rely on alignment results of the splice-aware aligners and are thus unsuitable for species with incomplete reference genomes. In contrast, de novo approaches do not depend on the reference genome but face a computational daunting task derived from the complexity of the graph built for the whole transcriptome. In response to these challenges, we present a hybrid approach to exploit an incomplete reference genome without relying on splice-aware aligners. We have designed a split-and-align procedure to efficiently localize the reads to individual genomic loci, which is followed by an accurate de novo assembly to assemble reads falling into each locus. Using extensive simulation data, we demonstrate a high accuracy and precision in transcriptome reconstruction by comparing to selected transcriptome assembly tools. Our method is implemented in assemblySAM, a GUI software freely available at http://sammate.sourceforge.net.
Semantic equivalences are used in process algebra to capture the notion of similar behaviour, and this paper proposes a semi-quantitative equivalence for a stochastic process algebra developed for biological modelling. We consider abstracting away from fast reactions as suggested by the Quasi-Steady-State Assumption. We define a fast-slow bisimilarity based on this idea. We also show congruence under an appropriate condition for the cooperation operator of Bio-PEPA. The condition requires that there is no synchronisation over fast actions, and this distinguishes fast-slow bisimilarity from weak bisimilarity. We also show congruence for an operator which extends the reactions available for a species. We characterise models for which it is only necessary to consider the matching of slow transitions and we illustrate the equivalence on two models of competitive inhibition.
Chijie Zhuang
,Yong Zhang
,Xin Zhou
.
(2017)
.
"A Fast Tree Algorithm for Electric Field Calculation in Electrical Discharge Simulations"
.
Zhuang Chijie
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا