Do you want to publish a course? Click here

A semi-quantitative equivalence for abstracting from fast reactions

166   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

Semantic equivalences are used in process algebra to capture the notion of similar behaviour, and this paper proposes a semi-quantitative equivalence for a stochastic process algebra developed for biological modelling. We consider abstracting away from fast reactions as suggested by the Quasi-Steady-State Assumption. We define a fast-slow bisimilarity based on this idea. We also show congruence under an appropriate condition for the cooperation operator of Bio-PEPA. The condition requires that there is no synchronisation over fast actions, and this distinguishes fast-slow bisimilarity from weak bisimilarity. We also show congruence for an operator which extends the reactions available for a species. We characterise models for which it is only necessary to consider the matching of slow transitions and we illustrate the equivalence on two models of competitive inhibition.



rate research

Read More

Up to now, it is not possible to obtain analytical solutions for complex molecular association processes (e.g. Molecule recognition in Signaling or catalysis). Instead Brownian Dynamics (BD) simulations are commonly used to estimate the rate of diffusional association, e.g. to be later used in mesoscopic simulations. Meanwhile a portfolio of diffusional association (DA) methods have been developed that exploit BD. However, DA methods do not clearly distinguish between modeling, simulation, and experiment settings. This hampers to classify and compare the existing methods with respect to, for instance model assumptions, simulation approximations or specific optimization strategies for steering the computation of trajectories. To address this deficiency we propose FADA (Flexible Architecture for Diffusional Association) - an architecture that allows the flexible definition of the experiment comprising a formal description of the model in SpacePi, different simulators, as well as validation and analysis methods. Based on the NAM (Northrup-Allison-McCammon) method, which forms the basis of many existing DA methods, we illustrate the structure and functioning of FADA. A discussion of future validation experiments illuminates how the FADA can be exploited in order to estimate reaction rates and how validation techniques may be applied to validate additional features of the model.
The liver performs critical physiological functions, including metabolizing and removing substances, such as toxins and drugs, from the bloodstream. Hepatotoxicity itself is intimately linked to abnormal hepatic transport and hepatotoxicity remains the primary reason drugs in development fail and approved drugs are withdrawn from the market. For this reason, we propose to analyze, across liver compartments, the transport kinetics of fluorescein-a fluorescent marker used as a proxy for drug molecules-using intravital microscopy data. To resolve the transport kinetics quantitatively from fluorescence data, we account for the effect that different liver compartments (with different chemical properties) have on fluoresceins emission rate. To do so, we develop ordinary differential equation transport models from the data where the kinetics are related to the observable fluorescence levels by measurement parameters that vary across different liver compartments. On account of the steep non-linearities in the kinetics and stochasticity inherent to the model, we infer kinetic and measurement parameters by generalizing the method of parameter cascades. For this application, the method of parameter cascades ensures fast and precise parameter estimates from noisy time traces.
Large-scale research endeavors can be hindered by logistical constraints limiting the amount of available data. For example, global ecological questions require a global dataset, and traditional sampling protocols are often too inefficient for a small research team to collect an adequate amount of data. Citizen science offers an alternative by crowdsourcing data collection. Despite growing popularity, the community has been slow to embrace it largely due to concerns about quality of data collected by citizen scientists. Using the citizen science project Floating Forests (http://floatingforests.org), we show that consensus classifications made by citizen scientists produce data that is of comparable quality to expert generated classifications. Floating Forests is a web-based project in which citizen scientists view satellite photographs of coastlines and trace the borders of kelp patches. Since launch in 2014, over 7,000 citizen scientists have classified over 750,000 images of kelp forests largely in California and Tasmania. Images are classified by 15 users. We generated consensus classifications by overlaying all citizen classifications and assessed accuracy by comparing to expert classifications. Matthews correlation coefficient (MCC) was calculated for each threshold (1-15), and the threshold with the highest MCC was considered optimal. We showed that optimal user threshold was 4.2 with an MCC of 0.400 (0.023 SE) for Landsats 5 and 7, and a MCC of 0.639 (0.246 SE) for Landsat 8. These results suggest that citizen science data derived from consensus classifications are of comparable accuracy to expert classifications. Citizen science projects should implement methods such as consensus classification in conjunction with a quantitative comparison to expert generated classifications to avoid concerns about data quality.
125 - Roberto Serra 2013
In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs) of molecules. The results of the simulations performed on ensembles of randomly generated reaction schemes highlight remarkable differences between this very simple protocell description model and the classical case of the continuous stirred-tank reactor (CSTR). In particular, in the CSTR case, distinct simulations with the same reaction scheme reach the same dynamical equilibrium, whereas, in the protocell case, simulations with identical reaction schemes can reach very different dynamical states, despite starting from the same initial conditions.
128 - Giulio Caravagna 2010
Delays in biological systems may be used to model events for which the underlying dynamics cannot be precisely observed, or to provide abstraction of some behavior of the system resulting more compact models. In this paper we enrich the stochastic process algebra Bio-PEPA, with the possibility of assigning delays to actions, yielding a new non-Markovian process algebra: Bio-PEPAd. This is a conservative extension meaning that the original syntax of Bio-PEPA is retained and the delay specification which can now be associated with actions may be added to existing Bio-PEPA models. The semantics of the firing of the actions with delays is the delay-as-duration approach, earlier presented in papers on the stochastic simulation of biological systems with delays. These semantics of the algebra are given in the Starting-Terminating style, meaning that the state and the completion of an action are observed as two separate events, as required by delays. Furthermore we outline how to perform stochastic simulation of Bio-PEPAd systems and how to automatically translate a Bio-PEPAd system into a set of Delay Differential Equations, the deterministic framework for modeling of biological systems with delays. We end the paper with two example models of biological systems with delays to illustrate the approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا