Do you want to publish a course? Click here

Learning Independent Features with Adversarial Nets for Non-linear ICA

288   0   0.0 ( 0 )
 Added by Phil\\'emon Brakel
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Reliable measures of statistical dependence could be useful tools for learning independent features and performing tasks like source separation using Independent Component Analysis (ICA). Unfortunately, many of such measures, like the mutual information, are hard to estimate and optimize directly. We propose to learn independent features with adversarial objectives which optimize such measures implicitly. These objectives compare samples from the joint distribution and the product of the marginals without the need to compute any probability densities. We also propose two methods for obtaining samples from the product of the marginals using either a simple resampling trick or a separate parametric distribution. Our experiments show that this strategy can easily be applied to different types of model architectures and solve both linear and non-linear ICA problems.



rate research

Read More

We introduce a new general identifiable framework for principled disentanglement referred to as Structured Nonlinear Independent Component Analysis (SNICA). Our contribution is to extend the identifiability theory of deep generative models for a very broad class of structured models. While previous works have shown identifiability for specific classes of time-series models, our theorems extend this to more general temporal structures as well as to models with more complex structures such as spatial dependencies. In particular, we establish the major result that identifiability for this framework holds even in the presence of noise of unknown distribution. The SNICA setting therefore subsumes all the existing nonlinear ICA models for time-series and also allows for new much richer identifiable models. Finally, as an example of our frameworks flexibility, we introduce the first nonlinear ICA model for time-series that combines the following very useful properties: it accounts for both nonstationarity and autocorrelation in a fully unsupervised setting; performs dimensionality reduction; models hidden states; and enables principled estimation and inference by variational maximum-likelihood.
In this paper we study the adversarial combinatorial bandit with a known non-linear reward function, extending existing work on adversarial linear combinatorial bandit. {The adversarial combinatorial bandit with general non-linear reward is an important open problem in bandit literature, and it is still unclear whether there is a significant gap from the case of linear reward, stochastic bandit, or semi-bandit feedback.} We show that, with $N$ arms and subsets of $K$ arms being chosen at each of $T$ time periods, the minimax optimal regret is $widetildeTheta_{d}(sqrt{N^d T})$ if the reward function is a $d$-degree polynomial with $d< K$, and $Theta_K(sqrt{N^K T})$ if the reward function is not a low-degree polynomial. {Both bounds are significantly different from the bound $O(sqrt{mathrm{poly}(N,K)T})$ for the linear case, which suggests that there is a fundamental gap between the linear and non-linear reward structures.} Our result also finds applications to adversarial assortment optimization problem in online recommendation. We show that in the worst-case of adversarial assortment problem, the optimal algorithm must treat each individual $binom{N}{K}$ assortment as independent.
We present a multi-task learning formulation for Deep Gaussian processes (DGPs), through non-linear mixtures of latent processes. The latent space is composed of private processes that capture within-task information and shared processes that capture across-task dependencies. We propose two different methods for segmenting the latent space: through hard coding shared and task-specific processes or through soft sharing with Automatic Relevance Determination kernels. We show that our formulation is able to improve the learning performance and transfer information between the tasks, outperforming other probabilistic multi-task learning models across real-world and benchmarking settings.
Developments in deep generative models have allowed for tractable learning of high-dimensional data distributions. While the employed learning procedures typically assume that training data is drawn i.i.d. from the distribution of interest, it may be desirable to model distinct distributions which are observed sequentially, such as when different classes are encountered over time. Although conditional variations of deep generative models permit multiple distributions to be modeled by a single network in a disentangled fashion, they are susceptible to catastrophic forgetting when the distributions are encountered sequentially. In this paper, we adapt recent work in reducing catastrophic forgetting to the task of training generative adversarial networks on a sequence of distinct distributions, enabling continual generative modeling.
Interpretability has largely focused on local explanations, i.e. explaining why a model made a particular prediction for a sample. These explanations are appealing due to their simplicity and local fidelity. However, they do not provide information about the general behavior of the model. We propose to leverage model distillation to learn global additive explanations that describe the relationship between input features and model predictions. These global explanations take the form of feature shapes, which are more expressive than feature attributions. Through careful experimentation, we show qualitatively and quantitatively that global additive explanations are able to describe model behavior and yield insights about models such as neural nets. A visualization of our approach applied to a neural net as it is trained is available at https://youtu.be/ErQYwNqzEdc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا