Do you want to publish a course? Click here

Adversarial Combinatorial Bandits with General Non-linear Reward Functions

94   0   0.0 ( 0 )
 Added by Yining Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper we study the adversarial combinatorial bandit with a known non-linear reward function, extending existing work on adversarial linear combinatorial bandit. {The adversarial combinatorial bandit with general non-linear reward is an important open problem in bandit literature, and it is still unclear whether there is a significant gap from the case of linear reward, stochastic bandit, or semi-bandit feedback.} We show that, with $N$ arms and subsets of $K$ arms being chosen at each of $T$ time periods, the minimax optimal regret is $widetildeTheta_{d}(sqrt{N^d T})$ if the reward function is a $d$-degree polynomial with $d< K$, and $Theta_K(sqrt{N^K T})$ if the reward function is not a low-degree polynomial. {Both bounds are significantly different from the bound $O(sqrt{mathrm{poly}(N,K)T})$ for the linear case, which suggests that there is a fundamental gap between the linear and non-linear reward structures.} Our result also finds applications to adversarial assortment optimization problem in online recommendation. We show that in the worst-case of adversarial assortment problem, the optimal algorithm must treat each individual $binom{N}{K}$ assortment as independent.



rate research

Read More

The contextual combinatorial semi-bandit problem with linear payoff functions is a decision-making problem in which a learner chooses a set of arms with the feature vectors in each round under given constraints so as to maximize the sum of rewards of arms. Several existing algorithms have regret bounds that are optimal with respect to the number of rounds $T$. However, there is a gap of $tilde{O}(max(sqrt{d}, sqrt{k}))$ between the current best upper and lower bounds, where $d$ is the dimension of the feature vectors, $k$ is the number of the chosen arms in a round, and $tilde{O}(cdot)$ ignores the logarithmic factors. The dependence of $k$ and $d$ is of practical importance because $k$ may be larger than $T$ in real-world applications such as recommender systems. In this paper, we fill the gap by improving the upper and lower bounds. More precisely, we show that the C${}^2$UCB algorithm proposed by Qin, Chen, and Zhu (2014) has the optimal regret bound $tilde{O}(dsqrt{kT} + dk)$ for the partition matroid constraints. For general constraints, we propose an algorithm that modifies the reward estimates of arms in the C${}^2$UCB algorithm and demonstrate that it enjoys the optimal regret bound for a more general problem that can take into account other objectives simultaneously. We also show that our technique would be applicable to related problems. Numerical experiments support our theoretical results and considerations.
Stochastic linear contextual bandit algorithms have substantial applications in practice, such as recommender systems, online advertising, clinical trials, etc. Recent works show that optimal bandit algorithms are vulnerable to adversarial attacks and can fail completely in the presence of attacks. Existing robust bandit algorithms only work for the non-contextual setting under the attack of rewards and cannot improve the robustness in the general and popular contextual bandit environment. In addition, none of the existing methods can defend against attacked context. In this work, we provide the first robust bandit algorithm for stochastic linear contextual bandit setting under a fully adaptive and omniscient attack. Our algorithm not only works under the attack of rewards, but also under attacked context. Moreover, it does not need any information about the attack budget or the particular form of the attack. We provide theoretical guarantees for our proposed algorithm and show by extensive experiments that our proposed algorithm significantly improves the robustness against various kinds of popular attacks.
267 - Yihan Du , Yuko Kuroki , Wei Chen 2021
In this paper, we study the Combinatorial Pure Exploration problem with the bottleneck reward function (CPE-B) under the fixed-confidence and fixed-budget settings. In CPE-B, given a set of base arms and a collection of subsets of base arms (super arms) following certain combinatorial constraint, a learner sequentially plays (samples) a base arm and observes its random outcome, with the objective of finding the optimal super arm that maximizes its bottleneck value, defined as the minimum expected value among the base arms contained in the super arm. CPE-B captures a variety of practical scenarios such as network routing in communication networks, but it cannot be solved by the existing CPE algorithms since most of them assumed linear reward functions. For CPE-B, we present both fixed-confidence and fixed-budget algorithms, and provide the sample complexity lower bound for the fixed-confidence setting, which implies that our algorithms match the lower bound (within a logarithmic factor) for a broad family of instances. In addition, we extend CPE-B to general reward functions (CPE-G) and propose the first fixed-confidence algorithm for general non-linear reward functions with non-trivial sample complexity. Our experimental results on the top-$k$, path and matching instances demonstrate the empirical superiority of our proposed algorithms over the baselines.
Contextual bandit algorithms are useful in personalized online decision-making. However, many applications such as personalized medicine and online advertising require the utilization of individual-specific information for effective learning, while users data should remain private from the server due to privacy concerns. This motivates the introduction of local differential privacy (LDP), a stringent notion in privacy, to contextual bandits. In this paper, we design LDP algorithms for stochastic generalized linear bandits to achieve the same regret bound as in non-privacy settings. Our main idea is to develop a stochastic gradient-based estimator and update mechanism to ensure LDP. We then exploit the flexibility of stochastic gradient descent (SGD), whose theoretical guarantee for bandit problems is rarely explored, in dealing with generalized linear bandits. We also develop an estimator and update mechanism based on Ordinary Least Square (OLS) for linear bandits. Finally, we conduct experiments with both simulation and real-world datasets to demonstrate the consistently superb performance of our algorithms under LDP constraints with reasonably small parameters $(varepsilon, delta)$ to ensure strong privacy protection.
Standard approaches to decision-making under uncertainty focus on sequential exploration of the space of decisions. However, textit{simultaneously} proposing a batch of decisions, which leverages available resources for parallel experimentation, has the potential to rapidly accelerate exploration. We present a family of (parallel) contextual linear bandit algorithms, whose regret is nearly identical to their perfectly sequential counterparts -- given access to the same total number of oracle queries -- up to a lower-order burn-in term that is dependent on the context-set geometry. We provide matching information-theoretic lower bounds on parallel regret performance to establish our algorithms are asymptotically optimal in the time horizon. Finally, we also present an empirical evaluation of these parallel algorithms in several domains, including materials discovery and biological sequence design problems, to demonstrate the utility of parallelized bandits in practical settings.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا