Do you want to publish a course? Click here

Monomial ideals of weighted oriented graphs

113   0   0.0 ( 0 )
 Added by Yuriko Pitones
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Let I=I(D) be the edge ideal of a weighted oriented graph D. We determine the irredundant irreducible decomposition of I. Also, we characterize the associated primes and the unmixed property of I. Furthermore, we give a combinatorial characterization for the unmixed property of I, when D is bipartite, D is a whisker or D is a cycle. Finally, we study the Cohen-Macaulay property of I.



rate research

Read More

Let $mathcal{D}$ be a weighted oriented graph and $I(mathcal{D})$ be its edge ideal. In this paper, we show that all the symbolic and ordinary powers of $I(mathcal{D})$ coincide when $mathcal{D}$ is a weighted oriented certain class of tree. Finally, we give necessary and sufficient conditions for the equality of ordinary and symbolic powers of naturally oriented lines.
Let $mathcal{D}$ be a weighted oriented graph and let $I(mathcal{D})$ be its edge ideal. Under a natural condition that the underlying (undirected) graph of $mathcal{D}$ contains a perfect matching consisting of leaves, we provide several equivalent conditions for the Cohen-Macaulayness of $I(mathcal{D})$. We also completely characterize the Cohen-Macaulayness of $I(mathcal{D})$ when the underlying graph of $mathcal{D}$ is a bipartite graph. When $I(mathcal{D})$ fails to be Cohen-Macaulay, we give an instance where $I(mathcal{D})$ is shown to be sequentially Cohen-Macaulay.
171 - Guangjun Zhu , Hong Wang , Li Xu 2019
In this paper we provide some exact formulas for the projective dimension and the regularity of edge ideals associated to three special types of vertex-weighted oriented $m$-partite graphs. These formulas are functions of the weight and number of vertices. We also give some examples to show that these formulas are related to direction selection and the weight of vertices.
This paper is concerned with the question of whether geometric structures such as cell complexes can be used to simultaneously describe the minimal free resolutions of all powers of a monomial ideal. We provide a full answer in the case of square-free monomial ideals of projective dimension one, by introducing a combinatorial construction of a family of (cubical) cell complexes whose 1-skeletons are powers of a graph that supports the resolution of the ideal.
Let $A = K[X_1,ldots, X_d]$ and let $I$, $J$ be monomial ideals in $A$. Let $I_n(J) = (I^n colon J^infty)$ be the $n^{th}$ symbolic power of $I$ wrt $J$. It is easy to see that the function $f^I_J(n) = e_0(I_n(J)/I^n)$ is of quasi-polynomial type, say of period $g$ and degree $c$. For $n gg 0$ say [ f^I_J(n) = a_c(n)n^c + a_{c-1}(n)n^{c-1} + text{lower terms}, ] where for $i = 0, ldots, c$, $a_i colon mathbb{N} rt mathbb{Z}$ are periodic functions of period $g$ and $a_c eq 0$. In an earlier paper we (together with Herzog and Verma) proved that $dim I_n(J)/I^n$ is constant for $n gg 0$ and $a_c(-)$ is a constant. In this paper we prove that if $I$ is generated by some elements of the same degree and height $I geq 2$ then $a_{c-1}(-)$ is also a constant.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا