Do you want to publish a course? Click here

Single shot ultrafast laser processing of high-aspect ratio nanochannels using elliptical Bessel beams

69   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultrafast lasers have revolutionized material processing, opening a wealth of new applications in many areas of science. A recent technology that allows the cleaving of transparent materials via non-ablative processes is based on focusing and translating a high-intensity laser beam within a material to induce a well-defined internal stress plane. This then enables material separation without debris generation. Here, we use a non-diffracting beam engineered to have a transverse elliptical spatial profile to generate high aspect ratio elliptical channels in glass of dimension 350 nm x 710 nm, and subsequent cleaved surface uniformity at the sub-micron level.



rate research

Read More

Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 microns and produces a synchrotron spectrum with critical energy E_c=12.3 +- 2.5 keV and 10^9 photons per shot in the whole spectrum.
Ultrafast imaging is a powerful tool for studying space-time dynamics in photonic material, plasma physics, living cells, and neural activity. Pushing the imaging speed to the quantum limit could reveal extraordinary scenes about the questionable quantization of life and intelligence, or the wave-particle duality of light. However, previous designs of ultrafast photography are intrinsically limited by framing speed. Here, we introduce a new technique based on a multiple non-collinear optical parametric amplifier principle (MOPA), which readily push the frame rate into the area of ten trillion frames per second with higher spatial resolution than 30 line pairs per millimeter. The MOPA imaging is applied to record the femtosecond early evolution of laser-induced plasma grating in air for the first time. Our approach avoids the intrinsic limitations of previous methods, thus can be potentially optimized for higher speed and resolution, opening the way of approaching quantum limits to test the fundamentals.
Despite the fact that the resolution of conventional contact/proximity lithography can reach feature sizes down to ~0.5-0.6 micrometers, the accurate control of the linewidth and uniformity becomes already very challenging for gratings with periods in the range of 1-2 {mu}m. This is particularly relevant for the exposure of large areas and wafers thinner than 300{mu}m. If the wafer or mask surface is not fully flat due to any kind of defects, such as bowing/warpage or remaining topography of the surface in case of overlay exposures, noticeable linewidth variations or complete failure of lithography step will occur. We utilized the newly developed Displacement Talbot lithography to pattern gratings with equal lines and spaces and periods in the range of 1.0 to 2.4 {mu}m. The exposures in this lithography process do not require contact between the mask and the wafer, which makes it essentially insensitive to surface planarity and enables exposures with very high linewidth uniformity on thin and even slightly deformed wafers. We demonstrated pattern transfer of such exposures into Si substrates by reactive ion etching using the Bosch process. An etching depth of 30 {mu}m or more for the whole range of periods was achieved, which corresponds to very high aspect ratios up to 60:1. The application of the fabricated gratings in phase contrast x-ray imaging is presented.
In this paper, a division-of-amplitude photopolarimeter (DOAP) for measuring the polarization state of free-electron laser (FEL) pulse is described. The incident FEL beam is divided into four separate beams, and four Stokes parameters can be measured in a single-shot. In the crossed-planar undulators experiment at Shanghai deep ultraviolet FEL test facility, this DOAP instrument constructed in house responses accurately and timely while the polarization-state of fully coherent FEL pulses are switched, which is helpful for confirming the crossed-planar undulators technique for short-wavelength FELs.
Photoluminescence (PL) has become a common tool to characterize various properties of single-walled carbon nanotube (SWCNT) chirality distribution and the level of tube individualization in SWCNT samples. Most PL studies employ conventional lamp light sources whose spectral distribution is filtered with a monochromator but this results in a still impure spectrum with a low spectral intensity. Tunable dye lasers offer a tunable light source which cover the desired excitation wavelength range with a high spectral intensity, but their operation is often cumbersome. Here, we present the design and properties of an improved dye-laser system which is based on a Q-switch pump laser. The high peak power of the pump provides an essentially threshold-free lasing of the dye laser which substantially improves the operability. It allows operation with laser dyes such as Rhodamin 110 and Pyridin 1, which are otherwise on the border of operation of our laser. Our system allows to cover the 540-730 nm wavelength range with 4 dyes. In addition, the dye laser output pulses closely follow the properties of the pump this it directly provides a time resolved and tunable laser source. We demonstrate the performance of the system by measuring the photoluminescence map of a HiPco single-walled carbon nanotubes sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا