Do you want to publish a course? Click here

Constant-Length Labeling Schemes for Deterministic Radio Broadcast

57   0   0.0 ( 0 )
 Added by Avery Miller
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Broadcast is one of the fundamental network communication primitives. One node of a network, called the $mathit{source}$, has a message that has to be learned by all other nodes. We consider the feasibility of deterministic broadcast in radio networks. If nodes of the network do not have any labels, deterministic broadcast is impossible even in the four-cycle. On the other hand, if all nodes have distinct labels, then broadcast can be carried out, e.g., in a round-robin fashion, and hence $O(log n)$-bit labels are sufficient for this task in $n$-node networks. In fact, $O(log Delta)$-bit labels, where $Delta$ is the maximum degree, are enough to broadcast successfully. Hence, it is natural to ask if very short labels are sufficient for broadcast. Our main result is a positive answer to this question. We show that every radio network can be labeled using 2 bits in such a way that broadcast can be accomplished by some universal deterministic algorithm that does not know the network topology nor any bound on its size. Moreover, at the expense of an extra bit in the labels, we get the additional strong property that there exists a common round in which all nodes know that broadcast has been completed. Finally, we show that 3-bit labels are also sufficient to solve bo



rate research

Read More

We generalize the definition of Proof Labeling Schemes to reactive systems, that is, systems where the configuration is supposed to keep changing forever. As an example, we address the main classical test case of reactive tasks, namely, the task of token passing. Different RPLSs are given for the cases that the network is assumed to be a tree or an anonymous ring, or a general graph, and the sizes of RPLSs labels are analyzed. We also address the question of whether an RPLS exists. First, on the positive side, we show that there exists an RPLS for any distributed task for a family of graphs with unique identities. For the case of anonymous networks (even for the special case of rings), interestingly, it is known that no token passing algorithm is possible even if the number n of nodes is known. Nevertheless, we show that an RPLS is possible. On the negative side, we show that if one drops the assumption that n is known, then the construction becomes impossible.
We present simple deterministic algorithms for subgraph finding and enumeration in the broadcast CONGEST model of distributed computation: -- For any constant $k$, detecting $k$-paths and trees on $k$ nodes can be done in $O(1)$ rounds. -- For any constant $k$, detecting $k$-cycles and pseudotrees on $k$ nodes can be done in $O(n)$ rounds. -- On $d$-degenerate graphs, cliques and $4$-cycles can be enumerated in $O(d + log n)$ rounds, and $5$-cycles in $O(d^2 + log n)$ rounds. In many cases, these bounds are tight up to logarithmic factors. Moreover, we show that the algorithms for $d$-degenerate graphs can be improved to optimal complexity $O(d/log n)$ and $O(d^2/log n)$, respectively, in the supported CONGEST model, which can be seen as an intermediate model between CONGEST and the congested clique.
In this work we relate the deterministic complexity of factoring polynomials (over finite fields) to certain combinatorial objects we call m-schemes. We extend the known conditional deterministic subexponential time polynomial factoring algorithm for finite fields to get an underlying m-scheme. We demonstrate how the properties of m-schemes relate to improvements in the deterministic complexity of factoring polynomials over finite fields assuming the generalized Riemann Hypothesis (GRH). In particular, we give the first deterministic polynomial time algorithm (assuming GRH) to find a nontrivial factor of a polynomial of prime degree n where (n-1) is a smooth number.
We study and compare three coded schemes for single-server wireless broadcast of multiple description coded content to heterogeneous users. The users (sink nodes) demand different number of descriptions over links with different packet loss rates. The three coded schemes are based on the LT codes, growth codes, and randomized chunked codes. The schemes are compared on the basis of the total number of transmissions required to deliver the demands of all users, which we refer to as the server (source) delivery time. We design the degree distributions of LT codes by solving suitably defined linear optimization problems, and numerically characterize the achievable delivery time for different coding schemes. We find that including a systematic phase (uncoded transmission) is significantly beneficial for scenarios with low demands, and that coding is necessary for efficiently delivering high demands. Different demand and error rate scenarios may require very different coding schemes. Growth codes and chunked codes do not perform as well as optimized LT codes in the heterogeneous communication scenario.
Energy is often the most constrained resource in networks of battery-powered devices, and as devices become smaller, they spend a larger fraction of their energy on communication (transceiver usage) not computation. As an imperfect proxy for true energy usage, we define energy complexity to be the number of time slots a device transmits/listens; idle time and computation are free. In this paper we investigate the energy complexity of fundamental communication primitives such as broadcast in multi-hop radio networks. We consider models with collision detection (CD) and without (No-CD), as well as both randomized and deterministic algorithms. Some take-away messages from this work include: 1. The energy complexity of broadcast in a multi-hop network is intimately connected to the time complexity of leader election in a single-hop (clique) network. Many existing lower bounds on time complexity immediately transfer to energy complexity. For example, in the CD and No-CD models, we need $Omega(log n)$ and $Omega(log^2 n)$ energy, respectively. 2. The energy lower bounds above can almost be achieved, given sufficient ($Omega(n)$) time. In the CD and No-CD models we can solve broadcast using $O(frac{log nloglog n}{logloglog n})$ energy and $O(log^3 n)$ energy, respectively. 3. The complexity measures of Energy and Time are in conflict, and it is an open problem whether both can be minimized simultaneously. We give a tradeoff showing it is possible to be nearly optimal in both measures simultaneously. For any constant $epsilon>0$, broadcast can be solved in $O(D^{1+epsilon}log^{O(1/epsilon)} n)$ time with $O(log^{O(1/epsilon)} n)$ energy, where $D$ is the diameter of the network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا