Do you want to publish a course? Click here

Exact solution for growth-induced large bending deformation of a hyperelastic plate

94   0   0.0 ( 0 )
 Added by Jiong Wang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, the growth-induced bending deformation of a thin hyperelastic plate is studied. For a plane-strain problem, the governing PDE system is formulated, which is composed of the mechanical equilibrium equations, the constraint equation and the boundary conditions. By adopting a gradient growth field with the growth value changes linearly along the thickness direction, the exact solution to the governing PDE system can be derived. With the obtained solution, some important features of the bending deformation in the plate can be found and the effects of the different growth parameters can be revealed. This exact solution can serve as a benchmark one for testing the correctness of numerical schemes and approximate plate models in growth theory.



rate research

Read More

143 - Yang Liu , Wendi Ma , Hui-Hui Dai 2020
In this paper, the two-dimensional pure bending of a hyperelastic substrate coated by a nematic liquid crystal elastomer (abbreviated as NLCE) is studied within the framework of nonlinear elasticity. The governing system, arising from the deformational momentum balance, the orientational momentum balance and the mechanical constraint, is formulated, and the corresponding exact solution is derived for a given constitutive model. It is found that there exist two different bending solutions. In order to determine which the preferred one is, we compare the total potential energy for both solutions and find that the two energy curves may have an intersection point at a critical value of the bending angle $alpha_c$ for some material parameters. In particular, the director $bm n$ abruptly rotates $dfrac{pi}{2}$ from one solution to another at $alpha_c$, which indicates a director reorientation (or jump). Furthermore, the effects of different material and geometric parameters on the bending deformation and the transition angle $alpha_c$ can be revealed using the obtained bending solutions. Meanwhile, the exact solution can offer a benchmark problem for validating the accuracy of approximated plate models for liquid crystal elastomers.
This paper is a theoretical and numerical study of the uniform growth of a repeating sinusoidal imperfection in the line of a strut on a nonlinear elastic Winkler type foundation. The imperfection is introduced by considering an initially deformed shape which is a sine function with an half wavelength. The restoring force is either a bi-linear or an exponential profile. Periodic solutions of the equilibrium problem are found using three different approaches: a semi-analytical method, an explicit solution of a Galerkin method and a direct numerical resolution. These methods are found in very good agreement and show the existence of a maximum imperfection size which leads to a limit point in the equilibrium curve of the system. The existence of this limit point is very important since it governs the appearance of localization phenomena. Using the Galerkin method, we then establish an exact formula for this maximum imperfection size and we show that it does not depend on the choice of the restoring force. We also show that this method provides a better estimate with respect to previous publications. The decrease of the maximum compressive force supported by the beam as a function of the imperfection magnitude is also determined. We show that the leading term of the development has a different exponent than in subcritical buckling of elastic systems, and that the exponent values depend on the choice of the restoring force.
We show that there exists an exact solution for a lossless and reciprocal periodic surface impedance which ensures full conversion of a single-mode surface wave propagating along the impedance boundary to a single plane wave propagating along a desired direction in free space above the boundary. In contrast to known realizations of leaky-wave antennas, the optimal surface reactance modulation which is found here ensures the absence of evanescent higher-order modes of the Floquet wave expansion of fields near the radiating surface. Thus, all the energy carried by the surface wave is used for launching the single inhomogeneous plane wave into space, without accumulation of reactive energy in higher-order modes. The results of the study are expected to be useful for creation of leaky-wave antennas with the ultimate efficiency, and, moreover, can potentially lead to novel applications, from microwaves to nanophotonics.
In this paper, a deep collocation method (DCM) for thin plate bending problems is proposed. This method takes advantage of computational graphs and backpropagation algorithms involved in deep learning. Besides, the proposed DCM is based on a feedforward deep neural network (DNN) and differs from most previous applications of deep learning for mechanical problems. First, batches of randomly distributed collocation points are initially generated inside the domain and along the boundaries. A loss function is built with the aim that the governing partial differential equations (PDEs) of Kirchhoff plate bending problems, and the boundary/initial conditions are minimised at those collocation points. A combination of optimizers is adopted in the backpropagation process to minimize the loss function so as to obtain the optimal hyperparameters. In Kirchhoff plate bending problems, the C1 continuity requirement poses significant difficulties in traditional mesh-based methods. This can be solved by the proposed DCM, which uses a deep neural network to approximate the continuous transversal deflection, and is proved to be suitable to the bending analysis of Kirchhoff plate of various geometries.
We study the Cauchy problem associated with the equations governing a fluid loaded plate formulated on either the line or the half-line. We show that in both cases the problem can be solved by employing the unified approach to boundary value problems introduced by on of the authors in the late 1990s. The problem on the full line was analysed by Crighton et. al. using a combination of Laplace and Fourier transforms. The new approach avoids the technical difficulty of the a priori assumption that the amplitude of the plate is in $L^1_{dt}(R^+)$ and furthermore yields a simpler solution representation which immediately implies the problem is well-posed. For the problem on the half-line, a similar analysis yields a solution representation, but this formula involves two unknown functions. The main difficulty with the half-line problem is the characterisation of these two functions. By employing the so-called global relation, we show that the two functions can be obtained via the solution of a complex valued integral equation of the convolution type. This equation can be solved in closed form using the Laplace transform. By prescribing the initial data $eta_0$ to be in $H^3(R^+)$, we show that the solution depends continuously on the initial data, and hence, the problem is well-posed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا