Do you want to publish a course? Click here

The AMIGA sample of isolated galaxies XIII. The HI content of an almost nurture free sample

137   0   0.0 ( 0 )
 Added by Michael Jones
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the largest catalogue of HI single dish observations of isolated galaxies to date and the corresponding HI scaling relations, as part of the multi-wavelength project AMIGA (Analysis of the interstellar Medium in Isolated GAlaxies). Despite numerous studies of the HI content of galaxies, no revision has been made for the most isolated L* galaxies since 1984. In total we have measurements or constraints on the HI masses of 844 galaxies from the Catalogue of Isolated Galaxies (CIG), obtained with our own observations at Arecibo, Effelsberg, Nancay and GBT, and spectra from the literature. Cuts are made to this sample to ensure isolation and a high level of completeness. We then fit HI scaling relations based on luminosity, optical diameter and morphology. Our regression model incorporates all the data, including upper limits, and accounts for uncertainties in both variables, as well as distance uncertainties. The scaling relation of HI mass with optical diameter is in good agreement with that of Haynes & Giovanelli 1984, but our relation with luminosity is considerably steeper. This is attributed to the large uncertainties in the luminosities, which introduce a bias when using OLS regression (used previously), and the different morphology distributions of the samples. We find that the main effect of morphology on the relations is to increase the intercept and flatten the slope towards later types. These trends were not evident in previous works due to the small number of detected early-type galaxies. The HI scaling relations of the AMIGA sample define an up-to-date metric of the HI content of almost nurture free galaxies. These relations allow the expected HI mass, in the absence of interactions, of a galaxy to be predicted to within 0.25 dex, and are thus suitable for use as statistical measures of the impact of interactions on the neutral gas content of galaxies. (Abridged)



rate research

Read More

In the framework of the AMIGA project we present a revision of the environment for galaxies in the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973) using the ninth data release of the Sloan Digital Sky Survey (SDSS-DR9). The aims of this study are to refine the photometric-based AMIGA sample of isolated galaxies and to provide an improvement of the quantification of the isolation degree with respect to previous works, using both photometry and spectroscopy. We developed an automatic method to search for neighbours within a projected area of 1 Mpc radius centred on each primary galaxy to revise the CIG isolation criteria. Of the 636 CIG galaxies considered in the photometric study, 426 galaxies fulfil the CIG isolation criteria within 1 Mpc, taking into account projected neighbours. Of the 411 CIG galaxies considered in the spectroscopic study, 347 galaxies fulfil the CIG isolation criteria when a criterion about redshift difference is added. The available redshifts allow us to reject background neighbours and thus improve the photometric assessment. For the first time, the environment and the isolation degree of AMIGA galaxies are quantified using digital data. The use of the SDSS database permits one to identify fainter and smaller-size satellites than in previous AMIGA works. About 50% of the neighbours considered as potential companions in the photometric study are in fact background objects. We also find that about 92% of the neighbour galaxies that show recession velocities similar to the corresponding CIG galaxy are not considered by the CIG isolation criteria as potential companions, which may have a considerable influence on the evolution of the central CIG galaxy.
The basic properties of galaxies can be affected by both nature (internal processes) or nurture (interactions and effects of environment). Deconvolving the two effects is an important current effort in astrophysics. Observed properties of a sample of isolated galaxies should be largely the result of internal (natural) evolution. It follows that nurture-induced galaxy evolution can only be understood through comparative study of galaxies in different environments. We take a first look at SDSS (g-r) colors of galaxies in the AMIGA sample involving many of the most isolated galaxies in the local Universe. This leads us to simultaneously consider the pitfalls of using automated SDSS colors. We focus on median values for the principal morphological subtypes found in the AMIGA sample (E/S0 and Sb-Sc) and compare them with equivalent measures obtained for galaxies in denser environments. We find a weak tendency for AMIGA spiral galaxies to be redder than objects in close pairs. We find no clear difference when we compare with galaxies in other (e.g. group) environments. However, the (g-r) color of isolated galaxies shows a Gaussian distribution as might be expected assuming nurture-free evolution. We find a smaller median absolute deviation in colors for isolated galaxies compared to both wide and close pairs. The majority of the deviation on median colors for spiral subtypes is caused by a color-luminosity correlation. Surprisingly isolated and non-isolated early-type galaxies show similar (g-r). We see little evidence for a green valley in our sample with most spirals redder than (g-r)=0.7 having spurious colors. The redder colors of AMIGA spirals and lower color dispersions for AMIGA subtypes -compared with close pairs- is likely due to a more passive star formation in very isolated galaxies.
78 - D. Eckert , S. Ettori , J. Coupon 2015
Traditionally, galaxy clusters have been expected to retain all the material accreted since their formation epoch. For this reason, their matter content should be representative of the Universe as a whole, and thus their baryon fraction should be close to the Universal baryon fraction. We make use of the sample of the 100 brightest galaxy clusters discovered in the XXL Survey to investigate the fraction of baryons in the form of hot gas and stars in the cluster population. We measure the gas masses of the detected halos and use a mass--temperature relation directly calibrated using weak-lensing measurements for a subset of XXL clusters to estimate the halo mass. We find that the weak-lensing calibrated gas fraction of XXL-100-GC clusters is substantially lower than was found in previous studies using hydrostatic masses. Our best-fit relation between gas fraction and mass reads $f_{rm gas,500}=0.055_{-0.006}^{+0.007}left(M_{rm 500}/10^{14}M_odotright)^{0.21_{-0.10}^{+0.11}}$. The baryon budget of galaxy clusters therefore falls short of the Universal baryon fraction by about a factor of two at $r_{rm 500}$. Our measurements require a hydrostatic bias $1-b=M_X/M_{rm WL}=0.72_{-0.07}^{+0.08}$ to match the gas fraction obtained using lensing and hydrostatic equilibrium. Comparing our gas fraction measurements with the expectations from numerical simulations, our results favour an extreme feedback scheme in which a significant fraction of the baryons are expelled from the cores of halos. This model is, however, in contrast with the thermodynamical properties of observed halos, which might suggest that weak-lensing masses are overestimated. We note that a mass bias $1-b=0.58$ as required to reconcile Planck CMB and cluster counts should translate into an even lower baryon fraction, which poses a major challenge to our current understanding of galaxy clusters. [Abridged]
147 - A. Durbala 2008
We perform a detailed photometric analysis (bulge-disk-bar decomposition and Concentration-Asymmetry-Clumpiness - CAS parametrization) for a well defined sample of isolated galaxies, extracted from the Catalog of Isolated Galaxies (Karachentseva 1973) and reevaluated morphologically in the context of the AMIGA project. We focus on Sb-Sc morphological types, as they are the most representative population among the isolated spiral galaxies. Assuming that the bulge Sersic index and/or Bulge/Total luminosity ratios are reasonable diagnostics for pseudo- versus classical bulges, we conclude that the majority of late-type isolated disk galaxies likely host pseudobulges rather than classical bulges. Our parametrization of galactic bulges and disks suggests that the properties of the pseudobulges are strongly connected to those of the disks. This may indicate that pseudobulges are formed through internal processes within the disks (i.e. secular evolution) and that bars may play an important role in their formation. Although the sample under investigation covers a narrow morphological range, a clear separation between Sb and Sbc-Sc types is observed in various measures, e.g. the former are redder, brighter, have larger disks and larger bars, more luminous bulges, are more concentrated, more symmetric and clumpier than the latter. A comparison with samples of spiral galaxies (within the same morphological range) selected without isolation criteria reveals that the isolated galaxies tend to host larger bars, are more symmetric, less concentrated and less clumpy.
We report on the results of radio observations in the 21 cm emission line of atomic hydrogen (HI) of four relatively isolated ultra-diffuse galaxies (UDGs): DGSAT I, R-127-1, M-161-1, and SECCO-dI-2. Our Effelsberg observations resulted in non-detections for the first three UDGs, and a clear detection for the last. DGSAT I, R-127-1, and M-161-1 are quiescent galaxies with gas fractions that are much lower than those of typical field galaxies of the same stellar mass. On the other hand, SECCO-dI-2 is a star forming gas-rich dwarf, similar to two other field UDGs that have literature HI data: SECCO-dI-1 and UGC 2162. This group of three gas-rich UDGs have stellar and gaseous properties that are compatible with a recently proposed theoretical mechanism for the formation of UDGs, based on feedback-driven outflows. In contrast, the physical characteristics of R-127-1 and M-161-1 are puzzling, given their isolated nature. We interpret this dichotomy in the gaseous properties of field UDGs as a sign of the existence of multiple mechanisms for their formation, with the formation of the quiescent gas-poor UDGs remaining a mystery.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا