Do you want to publish a course? Click here

The HI content of isolated ultra-diffuse galaxies: A sign of multiple formation mechanisms?

94   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the results of radio observations in the 21 cm emission line of atomic hydrogen (HI) of four relatively isolated ultra-diffuse galaxies (UDGs): DGSAT I, R-127-1, M-161-1, and SECCO-dI-2. Our Effelsberg observations resulted in non-detections for the first three UDGs, and a clear detection for the last. DGSAT I, R-127-1, and M-161-1 are quiescent galaxies with gas fractions that are much lower than those of typical field galaxies of the same stellar mass. On the other hand, SECCO-dI-2 is a star forming gas-rich dwarf, similar to two other field UDGs that have literature HI data: SECCO-dI-1 and UGC 2162. This group of three gas-rich UDGs have stellar and gaseous properties that are compatible with a recently proposed theoretical mechanism for the formation of UDGs, based on feedback-driven outflows. In contrast, the physical characteristics of R-127-1 and M-161-1 are puzzling, given their isolated nature. We interpret this dichotomy in the gaseous properties of field UDGs as a sign of the existence of multiple mechanisms for their formation, with the formation of the quiescent gas-poor UDGs remaining a mystery.



rate research

Read More

We use the textsc{Romulus25} cosmological simulation volume to identify the largest-ever simulated sample of {it field} ultra-diffuse galaxies (UDGs). At $z=0$, we find that isolated UDGs have average star formation rates, colors, and virial masses for their stellar masses and environment. UDGs have moderately elevated HI masses, being 70% (300%) more HI-rich than typical isolated dwarf galaxies at luminosities brighter (fainter) than M$_mathrm{B}$=-14. However, UDGs are consistent with the general isolated dwarf galaxy population and make up $sim$20% of all field galaxies with 10$^7$<M$_star$/M$_odot$<10$^{9}$. The HI masses, effective radii, and overall appearances of our UDGs are consistent with existing observations of field UDGs, but we predict that many isolated UDGs have been missed by current surveys. Despite their isolation at $z=0$, the UDGs in our sample are the products of major mergers. Mergers are no more common in UDG than non-UDG progenitors, but mergers that create UDGs tend to happen earlier - almost never occurring after $z=1$, produce a temporary boost in spin, and cause star formation to be redistributed to the outskirts of galaxies, resulting in lower central star formation rates. The centers of the galaxies fade as their central stellar populations age, but their global star formation rates are maintained through bursts of star formation at larger radii, producing steeper negative g-r color gradients. This formation channel is unique relative to other proposals for UDG formation in isolated galaxies, demonstrating that UDGs can potentially be formed through multiple mechanisms.
Understanding the peculiar properties of Ultra Diffuse Galaxies (UDGs) via spectroscopic analysis is a challenging task requiring very deep observations and exquisite data reduction. In this work we perform one of the most complete characterisations of the stellar component of UDGs to date using deep optical spectroscopic data from OSIRIS at GTC. We measure radial and rotation velocities, star formation histories (SFH) and mean population parameters, such as ages and metallicities, for a sample of five UDG candidates in the Coma cluster. From the radial velocities, we confirm the Coma membership of these galaxies. We find that their rotation properties, if detected at all, are compatible with dwarf-like galaxies. The SFHs of the UDG are dominated by old (~ 7 Gyr), metal-poor ([M/H] ~ -1.1) and alpha-enhanced ([Mg/Fe] ~ 0.4) populations followed by a smooth or episodic decline which halted ~ 2 Gyr ago, possibly a sign of cluster-induced quenching. We find no obvious correlation between individual SFH shapes and any UDG morphological properties. The recovered stellar properties for UDGs are similar to those found for DDO44, a local UDG analogue resolved into stars. We conclude that the UDGs in our sample are extended dwarfs whose properties are likely the outcome of both internal processes, such as bursty SFHs and/or high-spin haloes, as well as environmental effects within the Coma cluster.
We study the gas kinematics of a sample of six isolated gas-rich low surface brightness galaxies, of the class called ultra-diffuse galaxies (UDGs). These galaxies have recently been shown to be outliers from the baryonic Tully-Fisher relation (BTFR), as they rotate much slower than expected given their baryonic mass, and to have baryon fractions similar to the cosmological mean. By means of a 3D kinematic modelling fitting technique, we show that the HI in our UDGs is distributed in thin regularly rotating discs and we determine their rotation velocity and gas velocity dispersion. We revisit the BTFR adding galaxies from other studies. We find a previously unknown trend between the deviation from the BTFR and the disc scale length valid for dwarf galaxies with circular speeds < 45 km/s, with our UDGs being at the extreme end. Based on our findings, we suggest that the high baryon fractions of our UDGs may originate due to the fact that they have experienced weak stellar feedback, likely due to their low star formation rate surface densities, and as a result they did not eject significant amounts of gas out of their discs. At the same time, we find indications that our UDGs may have higher-than-average stellar specific angular momentum, which can explain their large optical scale lengths.
We present CO observations toward a sample of six HI-rich Ultra-diffuse galaxies (UDGs) as well as one UDG (VLSB-A) in the Virgo Cluster with the IRAM 30-m telescope. CO 1-0 is marginally detected at 4sigma level in AGC122966, as the first detection of CO emission in UDGs. We estimate upper limits of molecular mass in other galaxies from the non-detection of CO lines. These upper limits and the marginal CO detection in AGC122966 indicate low mass ratios between molecular and atomic gas masses. With the star formation efficiency derived from the molecular gas, we suggest that the inefficiency of star formation in such HI-rich UDGs is likely caused by the low efficiency in converting molecules from atomic gas, instead of low efficiency in forming stars from molecular gas.
In order to investigate the contribution of diffuse components to their total HI emission, we have obtained high precision HI line flux densities with the 100m Green Bank Telescope for a sample of 100 isolated spiral and irregular galaxies which we have previously observed with the 43m telescope. A comparison of the observed HI line fluxes obtained with the two different telescopes, characterized by half-power beam widths of 9 arcmin and 21 arcmin respectively, exploits a ``beam matching technique to yield a statistical determination of the occurrence of diffuse HI components in their disks. A simple model of the HI distribution within a galaxy well describes ~75 % of the sample and accounts for all of the HI line flux density. The remaining galaxies are approximately evenly divided into two categories: ones which appear to possess a significantly more extensive HI distribution than the model predicts, and ones for which the HI distribution is more centrally concentrated than predicted. Examples of both extremes can be found in the literature but little attention has been paid to the centrally concentrated HI systems. Our sample has demonstrated that galaxies do not commonly possess extended regions of low surface brightness HI gas which is not accounted for by our current understanding of the structure of HI disks. Eight HI-rich companions to the target objects are identified, and a set of extragalactic HI line flux density calibrators is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا