In a paper of Cui and Zinsmeister the equivalence among three definitions of BMO-Teichmuller spaces associated with a Fuchsian group was proven using the Douady-Earle extension operator. In this paper, we show that these equivalences are actually biholomorphisms. It was further shown in the above quoted paper that the Douady-Earle extension operator is continuous at the origin. We improve this result by showing G^ateaux-differentiability at this point.
We introduce the concept of a new kind of symmetric homeomorphisms on the unit circle, which is derived from the generalization of symmetric homeomorphisms on the real line. By the investigation of the barycentric extension for this class of circle homeomorphisms and the biholomorphic automorphisms induced by trivial Beltrami coefficients, we endow a complex Banach manifold structure on the space of those generalized symmetric homeomorphisms.
We introduce a family of weighted BMO and VMO spaces for the unit ball and use them to characterize bounded and compact Hankel operators between different Bergman spaces. In particular, we resolve two problems left open by S. Janson in 1988 and R. Wallsten in 1990.
We prove that the Teichmuller space of surfaces with given boundary lengths equipped with the arc metric (resp. the Teichmuller metric) is almost isometric to the Teichmuller space of punctured surfaces equipped with the Thurston metric (resp. the Teichmuller metric).
We construct an Ahlfors-Bers complex analytic model for the Teichmuller space of the universal hyperbolic lamination (also known as Sullivans Teichmuller space) and the renormalized Weil-Petersson metric on it as an extension of the usual one. In this setting, we prove that Sullivans Teichmuller space is Kahler isometric biholomorphic to the space of continuous functions from the profinite completion of the fundamental group of a compact Riemann surface of genus greater than or equal to two to the Teichmuller space of this surface; i.e. We find natural Kahler coordinates for the Sullivans Teichmuller space. This is the main result. As a corollary, we show the expected fact that the Nag-Verjovsky embedding is transversal to the Sullivans Teichmuller space contained in the universal one.
This paper obtains new characterizations of weighted Hardy spaces and certain weighted $BMO$ type spaces via the boundedness of variation operators associated with approximate identities and their commutators, respectively.