Do you want to publish a course? Click here

Asteroid (21) Lutetia: Disk-resolved Photometric Analysis of Baetica Region

99   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

(21) Lutetia has been visited by Rosetta mission on July 2010 and observed with a phase angle ranging from 0.15 to 156.8 degrees. The Baetica region, located at the north pole has been extensively observed by OSIRIS cameras system. Baetica encompass a region called North Pole Crater Cluster (NPCC), shows a cluster of superposed craters which presents signs of variegation at the small phase angle images. For studying the location, we used 187 images distributed throughout 14 filter recorded by the NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) taken during the fly-by. We photometrically modeled the region using Minnaert disk-function and Akimov phase function to finally reconstruct a resolved spectral slope map at 5 and 20 degrees of phase angle. We observed a dichotomy between Gallicum and Danuvius-Sarnus Labes in the NPCC, but no significant phase reddening. In the next step, we applied the Hapke (2008, 2012) model for the NAC F82+F22 (649.2 nm), WAC F13 (375 nm) and WAC F17 (631.6 nm), enabling us to compose the normal albedo and Hapke parameter maps for NAC F82+F22. On Baetica, the 649 nm global properties are: geometric albedo of 0.205+-0.005, the average single-scattering albedo of 0.181+-0.005, the average asymmetric factor of -0.342+-0.003, the average shadow-hiding opposition effect amplitude and width respectivelly of 0.824+-0.002 and 0.040+-0.0007, the average roughness slope of 11.45+-3 deg. and the average porosity is 85+-0.2%. In the NPCC, the normal albedo variegation among the craters walls reach 8% brighter for Gallicum Labes and 2% fainter for Danuvius Labes. The Hapke parameter maps also show a dichotomy at the opposition effect coefficients, single-scattering albedo and asymmetric factor, that may be attributed to the maturation degree of the regolith or to compositonal variation.



rate research

Read More

261 - S. Marchi 2011
The European Space Agencys Rosetta spacecraft passed by the main belt asteroid (21) Lutetia the 10th July 2010. With its ~100km size, Lutetia is one of the largest asteroids ever imaged by a spacecraft. During the flyby, the on-board OSIRIS imaging system acquired spectacular images of Lutetias northern hemisphere revealing a complex surface scarred by numerous impact craters, reaching the maximum dimension of about 55km. In this paper, we assess the cratering history of the asteroid. For this purpose, we apply current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models, coupled with appropriate crater scaling laws, allow us to interpret the observed crater size-frequency distribution (SFD) and constrain the cratering history. Thanks to this approach, we derive the crater retention age of several regions on Lutetia, namely the time lapsed since their formation or global surface reset. We also investigate the influence of various factors -like Lutetias bulk structure and crater obliteration- on the observed crater SFDs and the estimated surface ages. From our analysis, it emerges that Lutetia underwent a complex collisional evolution, involving major local resurfacing events till recent times. The difference in crater density between the youngest and oldest recognized units implies a difference in age of more than a factor of 10. The youngest unit (Beatica) has an estimated age of tens to hundreds of Myr, while the oldest one (Achaia) formed during a period when the bombardment of asteroids was more intense than the current one, presumably around 3.6Gyr ago or older.
A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mission in July 2010, and the CH3 carbonaceous chondrite Pecora Escarpment 91467 (PCA 91467). Several spectra of this meteorite were acquired in the ultraviolet to near-infrared (0.3 to 2.2 {mu}m) and in the mid-infrared to thermal infrared (2.5 to 30.0 {mu}m or 4000 to ~333 cm^-1), and they are compared here to spectra from the asteroid 21 Lutetia. There are several similarities in absorption bands and overall spectral behavior between this CH3 meteorite and 21 Lutetia. Considering also that the bulk density of Lutetia is similar to that of CH chondrites, we suggest that this asteroid could be similar, or related to, the parent body of these meteorites, if not the parent body itself. However, the apparent surface diversity of Lutetia pointed out in previous studies indicates that it could simultaneously be related to other types of chondrites. Future discovery of additional unweathered CH chondrites could provide deeper insight in the possible connection between this family of metal-rich carbonaceous chondrites and 21 Lutetia or other featureless, possibly hydrated high-albedo asteroids.
The asteroid (21) Lutetia is the target of a planned close encounter by the Rosetta spacecraft in July 2010. To prepare for that flyby, Lutetia has been extensively observed by a variety of astronomical facilities. We used the Hubble Space Telescope (HST) to determine the albedo of Lutetia over a wide wavelength range, extending from ~150 nm to ~700 nm. Using data from a variety of HST filters and a ground-based visible light spectrum, we employed synthetic photometry techniques to derive absolute fluxes for Lutetia. New results from ground-based measurements of Lutetias size and shape were used to convert the absolute fluxes into albedos. We present our best model for the spectral energy distribution of Lutetia over the wavelength range 120-800 nm. There appears to be a steep drop in the albedo (by a factor of ~2) for wavelengths shorter than ~300 nm. Nevertheless, the far ultraviolet albedo of Lutetia (~10%) is considerably larger than that of typical C-chondrite material (~4%). The geometric albedo at 550 nm is 16.5 +/- 1%. Lutetias reflectivity is not consistent with a metal-dominated surface at infrared or radar wavelengths, and its albedo at all wavelengths (UV-visibile-IR-radar) is larger than observed for typical primitive, chondritic material. We derive a relatively high FUV albedo of ~10%, a result that will be tested by observations with the Alice spectrograph during the Rosetta flyby of Lutetia in July 2010.
We explore the correlation between an asteroids taxonomy and photometric phase curve using the H, G12 photometric phase function, with the shape of the phase function described by the single parameter G12. We explore the usability of G12 in taxonomic classification for individual objects, asteroid families, and dynamical groups. We conclude that the mean values of G12 for the considered taxonomic complexes are statistically different, and also discuss the overall shape of the G12 distribution for each taxonomic complex. Based on the values of G12 for about half a million asteroids, we compute the probabilities of C, S, and X complex membership for each asteroid. For an individual asteroid, these probabilities are rather evenly distributed over all of the complexes, thus preventing meaningful classification. We then present and discuss the G12 distributions for asteroid families, and predict the taxonomic complex preponderance for asteroid families given the distribution of G12 in each family. For certain asteroid families, the probabilistic prediction of taxonomic complex preponderance can clearly be made. The Nysa-Polana family shows two distinct regions in the proper element space with different G12 values dominating in each region. We conclude that the G12-based probabilistic distribution of taxonomic complexes through the main belt agrees with the general view of C complex asteroid proportion increasing towards the outer belt. We conclude that the G12 photometric parameter cannot be used in determining taxonomic complex for individual asteroids, but it can be utilized in the statistical treatment of asteroid families and different regions of the main asteroid belt.
We use the lightcurve inversion method to derive new shape models and spin states of asteroids from the sparse-in-time photometry compiled in the Lowell Photometric Database. To speed up the time-consuming process of scanning the period parameter space through the use of convex shape models, we use the distributed computing project Asteroids@home, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. This way, the period-search interval is divided into hundreds of smaller intervals. These intervals are scanned separately by different volunteers and then joined together. We also use an alternative, faster, approach when searching the best-fit period by using a model of triaxial ellipsoid. By this, we can independently confirm periods found with convex models and also find rotation periods for some of those asteroids for which the convex-model approach gives too many solutions. From the analysis of Lowell photometric data of the first 100,000 numbered asteroids, we derived 328 new models. This almost doubles the number of available models. We tested the reliability of our results by comparing models that were derived from purely Lowell data with those based on dense lightcurves, and we found that the rate of false-positive solutions is very low. We also present updated plots of the distribution of spin obliquities and pole ecliptic longitudes that confirm previous findings about a non-uniform distribution of spin axes. However, the models reconstructed from noisy sparse data are heavily biased towards more elongated bodies with high lightcurve amplitudes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا