Do you want to publish a course? Click here

A plausible link between the asteroid 21 Lutetia and CH carbonaceous chondrites

293   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mission in July 2010, and the CH3 carbonaceous chondrite Pecora Escarpment 91467 (PCA 91467). Several spectra of this meteorite were acquired in the ultraviolet to near-infrared (0.3 to 2.2 {mu}m) and in the mid-infrared to thermal infrared (2.5 to 30.0 {mu}m or 4000 to ~333 cm^-1), and they are compared here to spectra from the asteroid 21 Lutetia. There are several similarities in absorption bands and overall spectral behavior between this CH3 meteorite and 21 Lutetia. Considering also that the bulk density of Lutetia is similar to that of CH chondrites, we suggest that this asteroid could be similar, or related to, the parent body of these meteorites, if not the parent body itself. However, the apparent surface diversity of Lutetia pointed out in previous studies indicates that it could simultaneously be related to other types of chondrites. Future discovery of additional unweathered CH chondrites could provide deeper insight in the possible connection between this family of metal-rich carbonaceous chondrites and 21 Lutetia or other featureless, possibly hydrated high-albedo asteroids.



rate research

Read More

267 - S. Marchi 2011
The European Space Agencys Rosetta spacecraft passed by the main belt asteroid (21) Lutetia the 10th July 2010. With its ~100km size, Lutetia is one of the largest asteroids ever imaged by a spacecraft. During the flyby, the on-board OSIRIS imaging system acquired spectacular images of Lutetias northern hemisphere revealing a complex surface scarred by numerous impact craters, reaching the maximum dimension of about 55km. In this paper, we assess the cratering history of the asteroid. For this purpose, we apply current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models, coupled with appropriate crater scaling laws, allow us to interpret the observed crater size-frequency distribution (SFD) and constrain the cratering history. Thanks to this approach, we derive the crater retention age of several regions on Lutetia, namely the time lapsed since their formation or global surface reset. We also investigate the influence of various factors -like Lutetias bulk structure and crater obliteration- on the observed crater SFDs and the estimated surface ages. From our analysis, it emerges that Lutetia underwent a complex collisional evolution, involving major local resurfacing events till recent times. The difference in crater density between the youngest and oldest recognized units implies a difference in age of more than a factor of 10. The youngest unit (Beatica) has an estimated age of tens to hundreds of Myr, while the oldest one (Achaia) formed during a period when the bombardment of asteroids was more intense than the current one, presumably around 3.6Gyr ago or older.
We measured 3-micron reflectance spectra of 21 meteorites that represent all carbonaceous chondrite types available in terrestrial meteorite collections. The measurements were conducted at the Laboratory for Spectroscopy under Planetary Environmental Conditions (LabSPEC) at the Johns Hopkins University Applied Physics Laboratory (JHU APL) under vacuum and thermally-desiccated conditions (asteroid-like conditions). This is the most comprehensive 3-micron dataset of carbonaceous chondrites ever acquired in environments similar to the ones experienced by asteroids. The 3-micron reflectance spectra are extremely important for direct comparisons with and appropriate interpretations of reflectance data from ground-based telescopic and spacecraft observations of asteroids. We found good agreement between 3-{mu}m spectral characteristics of carbonaceous chondrites and carbonaceous chondrite classifications. The 3-{mu}m band is diverse, indicative of varying composition, thus suggesting that these carbonaceous chondrites experienced distinct parent body aqueous alteration and metamorphism environments.
(21) Lutetia has been visited by Rosetta mission on July 2010 and observed with a phase angle ranging from 0.15 to 156.8 degrees. The Baetica region, located at the north pole has been extensively observed by OSIRIS cameras system. Baetica encompass a region called North Pole Crater Cluster (NPCC), shows a cluster of superposed craters which presents signs of variegation at the small phase angle images. For studying the location, we used 187 images distributed throughout 14 filter recorded by the NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) taken during the fly-by. We photometrically modeled the region using Minnaert disk-function and Akimov phase function to finally reconstruct a resolved spectral slope map at 5 and 20 degrees of phase angle. We observed a dichotomy between Gallicum and Danuvius-Sarnus Labes in the NPCC, but no significant phase reddening. In the next step, we applied the Hapke (2008, 2012) model for the NAC F82+F22 (649.2 nm), WAC F13 (375 nm) and WAC F17 (631.6 nm), enabling us to compose the normal albedo and Hapke parameter maps for NAC F82+F22. On Baetica, the 649 nm global properties are: geometric albedo of 0.205+-0.005, the average single-scattering albedo of 0.181+-0.005, the average asymmetric factor of -0.342+-0.003, the average shadow-hiding opposition effect amplitude and width respectivelly of 0.824+-0.002 and 0.040+-0.0007, the average roughness slope of 11.45+-3 deg. and the average porosity is 85+-0.2%. In the NPCC, the normal albedo variegation among the craters walls reach 8% brighter for Gallicum Labes and 2% fainter for Danuvius Labes. The Hapke parameter maps also show a dichotomy at the opposition effect coefficients, single-scattering albedo and asymmetric factor, that may be attributed to the maturation degree of the regolith or to compositonal variation.
The asteroid (21) Lutetia is the target of a planned close encounter by the Rosetta spacecraft in July 2010. To prepare for that flyby, Lutetia has been extensively observed by a variety of astronomical facilities. We used the Hubble Space Telescope (HST) to determine the albedo of Lutetia over a wide wavelength range, extending from ~150 nm to ~700 nm. Using data from a variety of HST filters and a ground-based visible light spectrum, we employed synthetic photometry techniques to derive absolute fluxes for Lutetia. New results from ground-based measurements of Lutetias size and shape were used to convert the absolute fluxes into albedos. We present our best model for the spectral energy distribution of Lutetia over the wavelength range 120-800 nm. There appears to be a steep drop in the albedo (by a factor of ~2) for wavelengths shorter than ~300 nm. Nevertheless, the far ultraviolet albedo of Lutetia (~10%) is considerably larger than that of typical C-chondrite material (~4%). The geometric albedo at 550 nm is 16.5 +/- 1%. Lutetias reflectivity is not consistent with a metal-dominated surface at infrared or radar wavelengths, and its albedo at all wavelengths (UV-visibile-IR-radar) is larger than observed for typical primitive, chondritic material. We derive a relatively high FUV albedo of ~10%, a result that will be tested by observations with the Alice spectrograph during the Rosetta flyby of Lutetia in July 2010.
The valence of iron has been used in terrestrial studies to trace the hydrolysis of primary silicate rocks. Here, we use a similar approach to characterize the secondary processes, namely thermal metamorphism and aqueous alteration, that have affected carbonaceous chondrites. X-ray absorption near-edge structure spectroscopy at the Fe-K- edge was performed on a series of 36 CM, 9 CR, 10 CV, and 2 CI chondrites. Among the four carbonaceous chondrites groups studied, a correlation between the iron oxidation index (IOI = [2 ((Fe2+) + 3(Fe3+))/FeTOT) and the hydrogen content is observed. However, within the CM group, for which a progressive alteration sequence has been defined, a conversion of Fe3+ to Fe2+ is observed with increasing degree of aqueous alteration. This reduction of iron can be explained by an evolution in the mineralogy of the secondary phases. In the case of the few CM chondrites that experienced some thermal metamorphism, in addition to aqueous alteration, a redox memory of the aqueous alteration is present: a significant fraction of 3+ 2+ 0 Fe is present, together with Fe and sometimes Fe. From our data set, the CR chondrites show a wider range of IOI from 1.5 to 2.5. In all considered CR chondrites, the three oxidation states of iron coexist. Even in the least-altered CR chondrites, the fraction of Fe3+ can be high (30% for MET 00426). This observation confirms that oxidized iron has been integrated during formation of fine-grained amorphous material in the matrix. Last, the IOI of CV chondrites does not reflect the reduced/oxidized classification based on metal and magnetite proportions, but is strongly correlated with petrographic types. The valence of iron in CV chondrites therefore appears to be most closely related to thermal history, rather than aqueous alteration, even if these processes can occur together .
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا