Do you want to publish a course? Click here

Quantum Imaging with Incoherently Scattered Light from a Free-Electron Laser

54   0   0.0 ( 0 )
 Added by J. von Zanthier
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional x-ray crystallography methods. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered x-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes, including Compton scattering, fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss to higher than second-order paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations.

rate research

Read More

An X-ray free-electron laser oscillator (XFELO) is a new type of hard X-ray source that would produce fully coherent pulses with meV bandwidth and stable intensity. The XFELO complements existing sources based on self-amplified spontaneous emission (SASE) from high-gain X-ray free-electron lasers (XFEL) that produce ultra-short pulses with broad-band chaotic spectra. This report is based on discussions of scientific opportunities enabled by an XFELO during a workshop held at SLAC on June 29 - July 1, 2016
59 - G. Blaj , G. Carini , S. Carron 2017
Free-electron lasers (FELs) opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120 Hz pulses with 10^12 to 10^13 photons in 10 fs (billions of times brighter than at the most powerful synchrotrons). Concurrently, users and staff operate under high pressure due to flexible and often rapidly changing setups and low tolerance for system malfunction. This extreme detection environment raises unique challenges, from obvious to surprising, and leads to treating detectors as consumables. We discuss in detail the detector damage mechanisms observed in 7 years of operation at LCLS, together with the corresponding damage mitigation strategies and their effectiveness. Main types of damage mechanisms already identified include: (1) x-ray radiation damage (from catastrophic to classical), (2) direct and indirect damage caused by optical lasers, (3) sample induced damage, (4) vacuum related damage, (5) high-pressure environment. In total, 19 damage mechanisms have been identified. We also present general strategies for reducing damage risk or minimizing the impact of detector damage on the science program. These include availability of replacement parts and skilled operators and also careful planning, incident investigation resulting in updated designs, procedures and operator training.
Radiation damage is one of the most severe resolution limiting factors in x-ray imaging, especially relevant to biological samples. One way of circumventing this problem is to exploit correlation-based methods developed in quantum imaging. Among these, there is ghost imaging (GI) in which the image is formed by radiation that has never interacted with the sample. Here, we demonstrate GI at an XUV free-electron laser by utilizing correlation techniques. We discuss the experimental challenges, optimal setup, and crucial ingredients to maximize the achievable resolution.
The fluctuations of the longitudinal coherence length expected from the worlds first hard X-ray Free Electron Laser, the Linac Coherent Light Source, are investigated. We analyze, on a shot-to-shot basis, series of power spectra generated from 1D-FEL simulations. We evaluate how the intrinsic noise in the spectral profile of the X-ray beam reflects on its longitudinal coherence length. We show that the spectral stability of the LCLS beam will allow coherent X-ray experiments with a reasonable acquisition time. We also propose a scheme to deliver single-mode X-ray radiation using a narrow bandpass monochromator.
We report on coulomb explosion imaging of the wavefunction of the quantum halo system He$_2$. Each atom of this system is ionized by tunnelionization in a femto second laser pulse and in a second experiment by single photon ionization employing a free electron laser. We visualize the exponential decay of the probability density of the tunneling particle over distance for over two orders of magnitude up to an internuclear distance of 250 {AA}. By fitting the slope of the density in the tunneling regime we obtain a binding energy of 151.9 $pm$ 13.3 neV, which is in agreement with most recent calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا