No Arabic abstract
Fission fragment angular distributions can provide an important constraint on fission theory, improving predictive fission codes, and are a prerequisite for a precise ratio cross section measurement. Available anisotropy data is sparse, especially at neutron energies above 5 MeV. For the first time, a three-dimensional tracking detector is employed to study fragment emission angles and provide a direct measurement of angular anisotropy. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has deployed the fission time projection chamber (fissionTPC) to measure nuclear data with unprecedented precision. The fission fragment anisotropy of $^{235}$U has been measured over a wide range of incident neutron energies from 180 keV to 200 MeV; a careful study of the systematic uncertainties complement the data.
The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has performed measurements with a fission time projection chamber (fissionTPC) to study the fission process by reconstructing full three-dimensional tracks of fission fragments and other ionizing radiation. The amount of linear momentum imparted to the fissioning nucleus by the incident neutron can be inferred by measuring the opening angle between the fission fragments. Using this measured linear momentum, fission fragment angular distributions can be converted to the center-of-mass frame for anisotropy measurements. Angular anisotropy is an important experimental observable for understanding the quantum mechanical state of the fissioning nucleus and vital to determining detection efficiency for cross section measurements. Neutron linear momentum transfer to fissioning $^{235}$U, $^{238}$U, and $^{239}$Pu and fission fragment angular anisotropy of $^{235}$U and $^{238}$U as a function of neutron energies in the range 130 keV--250 MeV are presented.
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. To benchmark the TKE measurement, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the Oregon State University TRIGA reactor, giving pre-neutron emission $E^*_{TKE}=170.7pm0.4$ MeV in good agreement with known values. Our measurements are thus absolute measurements. The TKE in $^{235}$U(n,f) decreases non-linearly from 169 MeV to 161 MeV for $E_{n}$=2-100 MeV. The multi-modal fission analysis of mass distributions and TKE indicates the origin of the TKE decrease with increasing neutron energy is a consequence of the fade out of asymmetric fission, which is associated with a higher TKE compared to symmetric fission. The average TKE associated with the superlong, standard I and standard II modes for a given mass is independent of neutron energy. The widths of the TKE distributions are constant from $E_{n}$=20-100 MeV and hence show no dependence with excitation energy.
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. (To calibrate the apparatus, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the OSU TRIGA reactor). The TKE decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. The standard deviation of the TKE distribution is constant from $E_{n}$=20-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II modes for a given mass is independent of neutron energy.
The $^{239}$Pu(n,f)/$^{235}$U(n,f) cross-section ratio has been measured with the fission Time Projection Chamber (fissionTPC) from 100 keV to 100 MeV. The fissionTPC provides three-dimensional reconstruction of fission-fragment ionization profiles, allowing for a precise quantification of measurement uncertainties. The measurement was performed at the Los Alamos Neutron Science Center which provides a pulsed white source of neutrons. The data are recommended to be used as a cross-section ratio shape. A discussion of the status of the absolute normalization and comparisons to ENDF evaluations and previous measurements is included.
Several sources of angular anisotropy for fission fragments and prompt neutrons have been studied in neutron-induced fission reactions. These include kinematic recoils of the target from the incident neutron beam and the fragments from the emission of the prompt neutrons, preferential directions of the emission of the fission fragments with respect to the beam axis due to the population of particular transition states at the fission barrier, and forward-peaked angular distributions of pre-equilibrium neutrons which are emitted before the formation of a compound nucleus. In addition, there are several potential sources of angular anisotropies that are more difficult to disentangle: the angular distributions of prompt neutrons from fully accelerated fragments or from scission neutrons, and the emission of neutrons from fission fragments that are not fully accelerated. In this work, we study the effects of the first group of anisotropy sources, particularly exploring the correlations between the fission fragment anisotropy and the resulting neutron anisotropy. While kinematic effects were already accounted for in our Hauser-Feshbach Monte Carlo code, $mathtt{CGMF}$, anisotropic angular distributions for the fission fragments and pre-equilibrium neutrons resulting from neutron-induced fission on $^{233,234,235,238}$U, $^{239,241}$Pu, and $^{237}$Np have been introduced for the first time. The effects of these sources of anisotropy are examined over a range of incident neutron energies, from thermal to 20 MeV, and compared to experimental data from the Chi-Nu liquid scintillator array. The anisotropy of the fission fragments is reflected in the anisotropy of the prompt neutrons, especially as the outgoing energy of the prompt neutrons increases, allowing for an extraction of the fission fragment anisotropy to be made from a measurement of the neutrons.