Do you want to publish a course? Click here

Measurement of the $^{239}$Pu(n,f)/$^{235}$U(n,f) Cross-Section Ratio with the NIFFTE fission Time Projection Chamber

136   0   0.0 ( 0 )
 Added by Lucas Snyder
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The $^{239}$Pu(n,f)/$^{235}$U(n,f) cross-section ratio has been measured with the fission Time Projection Chamber (fissionTPC) from 100 keV to 100 MeV. The fissionTPC provides three-dimensional reconstruction of fission-fragment ionization profiles, allowing for a precise quantification of measurement uncertainties. The measurement was performed at the Los Alamos Neutron Science Center which provides a pulsed white source of neutrons. The data are recommended to be used as a cross-section ratio shape. A discussion of the status of the absolute normalization and comparisons to ENDF evaluations and previous measurements is included.



rate research

Read More

The normalized $^{238}$U(n,f)/$^{235}$U(n,f) cross section ratio has been measured using the NIFFTE fission Time Projection Chamber from the reaction threshold to $30$~MeV. The fissionTPC is a two-volume MICROMEGAS time projection chamber that allows for full three-dimensional reconstruction of fission-fragment ionization profiles from neutron-induced fission. The measurement was performed at the Los Alamos Neutron Science Center, where the neutron energy is determined from neutron time-of-flight. The $^{238}$U(n,f)/$^{235}$U(n,f) ratio reported here is the first cross section measurement made with the fissionTPC, and will provide new experimental data for evaluation of the $^{238}$U(n,f) cross section, an important standard used in neutron-flux measurements. Use of a development target in this work prevented the determination of an absolute normalization, to be addressed in future measurements. Instead, the measured cross section ratio has been normalized to ENDF/B-VIII.$beta$5 at 14.5 MeV.
366 - P. Marini , J. Taieb , B. Laurent 2019
Prompt fission neutron spectra from $^{239}$Pu($n,f$) were measured for incident neutron energies from $0.7$ to $700,$MeV at the Weapons Neutron Research facility (WNR) of the Los Alamos Neutron Science Center. A newly designed high-efficiency fission chamber was coupled to the highly segmented Chi-Nu array to detect neutrons emitted in fission events. The double time-of-flight technique was used to deduce the incident-neutron energies from the spallation target and the outgoing-neutron energies from the fission chamber. Prompt fission neutron spectra (PFNS) were measured with respect to $^{252}$Cf spontaneous fission down to $200,$keV and up to about $12,$MeV for all the incident neutron energies with typical uncertainties well below $2%$ up to about $10,$MeV outgoing-neutron energy. The general trend of PFNS is well reproduced by JEFF3.3 and ENDF-BVIII.0 evaluations. Discrepancies were however observed for the low-energy part of the spectra, where evaluations overestimate the number of emitted neutrons. Neutron multiplicities and average kinetic energies as a function of incident-neutron energy are obtained experimentally with reported uncertainties below $0.4%$. Neutron multiplicities disagree with some older datasets above $6,$ MeV, indicating the need of using a high-efficiency fission detector, which does not bias the data. The measured mean kinetic energies agree with the most recent data. Evaluations fairly reproduce the trend, but fail to reproduce the experimental values within their uncertainties.
The $(n,gamma f)$ process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on $^{235}$U and $^{239}$Pu. Observed fluctuations of the average prompt fission neutron multiplicity and average total $gamma$-ray energy below 100 eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the M1 transitions to the pre-fission $gamma$-ray spectrum of $^{239}$Pu is explained by the dominant fission probabilities of 0$^+$ and $2^+$ transition states, which can only be accessed from compound nucleus states formed by the interaction of $s$-wave neutrons with the target nucleus in its ground state, and decaying through M1 transitions. The impact of an additional low-lying M1 scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. Finally, calculations are extended to the fast energy range where $(n,gamma f)$ corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.
The average prompt-fission-neutron multiplicity $bar{ u}$ is of significance in the areas of nuclear theory, nuclear nonproliferation, and nuclear energy. In this work, the surrogate-reaction method has been used for the first time to indirectly determine $bar{ u}$ for $^{239}$Pu($n$,$f$) via $^{240}$Pu($alpha$,$alpha^{prime}f$) reactions. A $^{240}$Pu target was bombarded with a beam of 53.9-MeV $alpha$ particles. Scattered $alpha$ particles, fission products, and neutrons were measured with the NeutronSTARS detector array. Values of $bar{ u}$ were obtained for a continuous range of equivalent incident neutron energies between 0.25--26.25~MeV, and the results agree well with direct neutron measurements.
We present the results of a measurement of isotopic concentrations and atomic number ratio of a double-sided actinide target with alpha-spectroscopy and mass spectrometry. The double-sided actinide target, with primarily Pu-239 on one side and U-235 on the other, was used in the fission Time Projection Chamber (fissionTPC) for a measurement of the neutron-induced fission cross-section ratio between the two isotopes. The measured atomic number ratio is intended to provide an absolute normalization of the measured fission cross-section ratio. The Pu-239/U-235 atom number ratio was measured with a combination of mass spectrometry and alpha-spectroscopy with a planar silicon detector with uncertainties of less than 1%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا