No Arabic abstract
In a series of papers, Bartelt and co-workers developed novel snow-avalanche models in which emph{random kinetic energy} $R_K$ (a.k.a. granular temperature) is a key concept. The earliest models were for a single, constant density layer, using a Voellmy model but with $R_K$-dependent friction parameters. This was then extended to variable density, and finally a suspension layer (powder-snow cloud) was added. The physical basis and mathematical formulation of these models is critically reviewed here, with the following main findings: (i) Key assumptions in the original RKE model differ substantially from established results on dense granular flows; in particular, the effective friction coefficient decreases to zero with velocity in the RKE model. (ii) In the variable-density model, non-canonical interpretation of the energy balance leads to a third-order evolution equation for the flow depth or density, whereas the stated assumptions imply a first-order equation. (iii) The model for the suspension layer neglects gravity and disregards well established theoretical and experimental results on particulate gravity currents. Some options for improving these aspects are discussed.
We propose and demonstrate a scheme to realize a high-efficiency truly quantum random number generator (RNG) at room temperature (RT). Using an effective extractor with simple time bin encoding method, the avalanche pulses of avalanche photodiode (APD) are converted into high-quality random numbers (RNs) that are robust to slow varying noise such as fluctuations of pulse intensity and temperature. A light source is compatible but not necessary in this scheme. Therefor the robustness of the system is effective enhanced. The random bits generation rate of this proof-of-principle system is 0.69 Mbps with double APDs and 0.34 Mbps with single APD. The results indicate that a high-speed RNG chip based on the scheme is potentially available with an integrable APD array.
We make remarks on Sofos {it et al.}s [{it Phys. Rev. E} 79, 026305 (2009)] paper. The focus is about the monotonicity of the slip length of which it is different from previous similar numerical simulation. We also offer a possible explanation for this.
A new kinetic model for multiphase flow was presented under the framework of the discrete Boltzmann method (DBM). Significantly different from the previous DBM, a bottom-up approach was adopted in this model. The effects of molecular size and repulsion potential were described by the Enskog collision model; the attraction potential was obtained through the mean-field approximation method. The molecular interactions, which result in the non-ideal equation of state and surface tension, were directly introduced as an external force term. Several typical benchmark problems, including Couette flow, two-phase coexistence curve, the Laplace law, phase separation, and the collision of two droplets, were simulated to verify the model. Especially, for two types of droplet collisions, the strengths of two non-equilibrium effects, $bar{D}_2^*$ and $bar{D}_3^*$, defined through the second and third order non-conserved kinetic moments of $(f - f ^{eq})$, are comparatively investigated, where $f$ ($f^{eq}$) is the (equilibrium) distribution function. It is interesting to find that during the collision process, $bar{D}_2^*$ is always significantly larger than $bar{D}_3^*$, $bar{D}_2^*$ can be used to identify the different stages of the collision process and to distinguish different types of collisions. The modeling method can be directly extended to a higher-order model for the case where the non-equilibrium effect is strong, and the linear constitutive law of viscous stress is no longer valid.
We make some remarks on Sokhan and Quirkes [{it Phys. Rev. E} 78, 015301(R) (2008)] paper (arXiv:0805.1666). Sokhan and Quirke mentioned that, considering their main result, {the slip coefficient is independent of the external force (flux)} which is not consistent with previous measurements and approaches. We also discuss the sudden changes of the slip coefficient for larger Knudsen numbers or smaller nanopores.
This paper studies a training method to jointly estimate an energy-based model and a flow-based model, in which the two models are iteratively updated based on a shared adversarial value function. This joint training method has the following traits. (1) The update of the energy-based model is based on noise contrastive estimation, with the flow model serving as a strong noise distribution. (2) The update of the flow model approximately minimizes the Jensen-Shannon divergence between the flow model and the data distribution. (3) Unlike generative adversarial networks (GAN) which estimates an implicit probability distribution defined by a generator model, our method estimates two explicit probabilistic distributions on the data. Using the proposed method we demonstrate a significant improvement on the synthesis quality of the flow model, and show the effectiveness of unsupervised feature learning by the learned energy-based model. Furthermore, the proposed training method can be easily adapted to semi-supervised learning. We achieve competitive results to the state-of-the-art semi-supervised learning methods.