No Arabic abstract
In this article, we present a method to learn the interaction topology of a network of agents undergoing linear consensus updates in a non invasive manner. Our approach is based on multivariate Wiener filtering, which is known to recover spurious edges apart from the true edges in the topology. The main contribution of this work is to show that in the case of undirected consensus networks, all spurious links obtained using Wiener filtering can be identified using frequency response of the Wiener filters. Thus, the exact interaction topology of the agents is unveiled. The method presented requires time series measurements of the state of the agents and does not require any knowledge of link weights. To the best of our knowledge this is the first approach that provably reconstructs the structure of undirected consensus networks with correlated noise. We illustrate the effectiveness of the method developed through numerical simulations as well as experiments on a five node network of Raspberry Pis.
This paper presents conditions for establishing topological controllability in undirected networks of diffusively coupled agents. Specifically, controllability is considered based on the signs of the edges (negative, positive or zero). Our approach differs from well-known structural controllability conditions for linear systems or consensus networks, where controllability conditions are based on edge connectivity (i.e., zero or nonzero edges). Our results first provide a process for merging controllable graphs into a larger controllable graph. Then, based on this process, we provide a graph decomposition process for evaluating the topological controllability of a given network.
Learning influence pathways of a network of dynamically related processes from observations is of considerable importance in many disciplines. In this article, influence networks of agents which interact dynamically via linear dependencies are considered. An algorithm for the reconstruction of the topology of interaction based on multivariate Wiener filtering is analyzed. It is shown that for a vast and important class of interactions, that respect flow conservation, the topology of the interactions can be exactly recovered. The class of problems where reconstruction is guaranteed to be exact includes power distribution networks, dynamic thermal networks and consensus networks. The efficacy of the approach is illustrated through simulation and experiments on consensus networks, IEEE power distribution networks and thermal dynamics of buildings.
In a sensor network, in practice, the communication among sensors is subject to:(1) errors or failures at random times; (3) costs; and(2) constraints since sensors and networks operate under scarce resources, such as power, data rate, or communication. The signal-to-noise ratio (SNR) is usually a main factor in determining the probability of error (or of communication failure) in a link. These probabilities are then a proxy for the SNR under which the links operate. The paper studies the problem of designing the topology, i.e., assigning the probabilities of reliable communication among sensors (or of link failures) to maximize the rate of convergence of average consensus, when the link communication costs are taken into account, and there is an overall communication budget constraint. To consider this problem, we address a number of preliminary issues: (1) model the network as a random topology; (2) establish necessary and sufficient conditions for mean square sense (mss) and almost sure (a.s.) convergence of average consensus when network links fail; and, in particular, (3) show that a necessary and sufficient condition for both mss and a.s. convergence is for the algebraic connectivity of the mean graph describing the network topology to be strictly positive. With these results, we formulate topology design, subject to random link failures and to a communication cost constraint, as a constrained convex optimization problem to which we apply semidefinite programming techniques. We show by an extensive numerical study that the optimal design improves significantly the convergence speed of the consensus algorithm and can achieve the asymptotic performance of a non-random network at a fraction of the communication cost.
Both generative learning and discriminative learning have recently witnessed remarkable progress using Deep Neural Networks (DNNs). For structured input synthesis and structured output prediction problems (e.g., layout-to-image synthesis and image semantic segmentation respectively), they often are studied separately. This paper proposes deep consensus learning (DCL) for joint layout-to-image synthesis and weakly-supervised image semantic segmentation. The former is realized by a recently proposed LostGAN approach, and the latter by introducing an inference network as the third player joining the two-player game of LostGAN. Two deep consensus mappings are exploited to facilitate training the three networks end-to-end: Given an input layout (a list of object bounding boxes), the generator generates a mask (label map) and then use it to help synthesize an image. The inference network infers the mask for the synthesized image. Then, the latent consensus is measured between the mask generated by the generator and the one inferred by the inference network. For the real image corresponding to the input layout, its mask also is computed by the inference network, and then used by the generator to reconstruct the real image. Then, the data consensus is measured between the real image and its reconstructed image. The discriminator still plays the role of an adversary by computing the realness scores for a real image, its reconstructed image and a synthesized image. In experiments, our DCL is tested in the COCO-Stuff dataset. It obtains compelling layout-to-image synthesis results and weakly-supervised image semantic segmentation results.
This paper investigates the consensus problem of multiple uncertain Lagrangian systems. Due to the discontinuity resulted from the switching topology, achieving consensus in the context of uncertain Lagrangian systems is challenging. We propose a new adaptive controller based on dynamic feedback to resolve this problem and additionally propose a new analysis tool for rigorously demonstrating the stability and convergence of the networked systems. The new introduced analysis tool is referred to as uniform integral-L_p stability, which is motivated for addressing integral-input-output properties of linear time-varying systems. It is then shown that the consensus errors between the systems converge to zero so long as the union of the graphs contains a directed spanning tree. It is also shown that the proposed controller enjoys the robustness with respect to constant communication delays. The performance of the proposed adaptive controllers is shown by numerical simulations.