Do you want to publish a course? Click here

Graded components of local cohomology modules of invariant rings

88   0   0.0 ( 0 )
 Added by Tony Puthenpurakal
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Let $A$ be a regular domain containing a field $K$ of characteristic zero, $G$ be a finite subgroup of the group of automorphisms of $A$ and $B=A^G$ be the ring of invariants of $G$. Let $S= A[X_1,ldots, X_m]$ and $R= B[X_1, ldots, X_m]$ be standard graded with $ deg A=0$, $ deg B=0$ and $ deg X_i=1$ for all $i$. Extend the action of $G$ on $A$ to $S$ by fixing $X_i$. Note $S^G=R$. Let $I$ be an arbitrary homogeneous ideal in $R$. The main goal of this paper is to establish a comparative study of graded components of local cohomology modules $H_I^i(R)$ that would be analogs to those proven in a previous paper of the first author for $H_J^i(S)$ where $J$ is an arbitrary homogeneous ideal in $S$.



rate research

Read More

Let $A$ be a regular ring containing a field $K$ of characteristic zero and let $R = A[X_1,ldots, X_m]$. Consider $R$ as standard graded with $deg A = 0$ and $deg X_i = 1$ for all $i$. Let $G$ be a finite subgroup of $GL_m(A)$. Let $G$ act linearly on $R$ fixing $A$. Let $S = R^G$. In this paper we present a comprehensive study of graded components of local cohomology modules $H^i_I(S)$ where $I$ is an emph{arbitrary} homogeneous ideal in $S$. We prove stronger results when $G subseteq GL_m(K)$. Some of our results are new even in the case when $A$ is a field.
Let $A$ be a commutative Noetherian ring containing a field $K$ of characteristic zero and let $R= A[X_1, ldots, X_m]$. Consider $R$ as standard graded with $deg A=0$ and $deg X_i=1$ for all $i$. We present a few results about the behavior of the graded components of local cohomology modules $H_I^i(R)$ where $I$ is an arbitrary homogeneous ideal in $R$. We mostly restrict our attention to the Vanishing, Tameness and Rigidity problems.
Let $R=K[X_1,ldots, X_n]$ where $K$ is a field of characteristic zero, and let $A_n(K)$ be the $n^{th}$ Weyl algebra over $K$. We give standard grading on $R$ and $A_n(K)$. Let $I$, $J$ be homogeneous ideals of $R$. Let $M = H^i_I(R)$ and $N = H^j_J(R)$ for some $i, j$. We show that $Ext_{A_n(K)}^{ u}(M,N)$ is concentrated in degree zero for all $ u geq 0$, i.e., $Ext_{A_n(K)}^{ u}(M,N)_l=0$ for $l eq0$. This proves a conjecture stated in part I of this paper.
99 - Connor Sawaske 2017
There are a large number of theorems detailing the homological properties of the Stanley--Reisner ring of a simplicial complex. Here we attempt to generalize some of these results to the case of a simplicial poset. By investigating the combinatorics of certain modules associated with the face ring of a simplicial poset from a topological viewpoint, we extend some results of Miyazaki and Grabe to a wider setting.
Let $(A,mathfrak{m})$ be a hypersurface ring with dimension $d$, and $M$ a MCM $A-$module with reduction no.2 and $mu(M)=2$ or $3$ then we have proved that depth$G(M)geq d-mu(M)+1$. If $e(A)=3$ and $mu(M)=4$ then in this case we have proved that depth$G(M)geq d-3$. When $A = Q/(f)$ where $Q = k[[X_1,cdots, X_{d+1}]]$ then we give estimates for depth $G(M)$ in terms of minimal presentation of $M$. Our paper is the first systematic study of depth of associated graded modules of MCM modules over hypersurface rings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا