Do you want to publish a course? Click here

Visibility in the vacant set of the Brownian interlacements and the Brownian excursion process

93   0   0.0 ( 0 )
 Added by Olof Elias
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider the Brownian interlacements model in Euclidean space, introduced by A.S. Sznitman in cite{sznitman2013scaling}. We give estimates for the asymptotics of the visibility in the vacant set. We also consider visibility inside the vacant set of the Brownian excursion process in the unit disc and show that it undergoes a phase transition regarding visibility to infinity as in cite{benjamini2009visibility}. Additionally, we determine the critical value and that there is no visibility to infinity at the critical intensity.



rate research

Read More

We introduce the model of two-dimensional continuous random interlacements, which is constructed using the Brownian trajectories conditioned on not hitting a fixed set (usually, a disk). This model yields the local picture of Wiener sausage on the torus around a late point. As such, it can be seen as a continuous analogue of discrete two-dimensional random interlacements [Comets, Popov, Vachkovskaia, 2016]. At the same time, one can view it as (restricted) Brownian loops through infinity. We establish a number of results analogous to these of [Comets, Popov, Vachkovskaia, 2016; Comets, Popov, 2016], as well as the results specific to the continuous case.
138 - John C. Baez 2021
The Brownian map is a fundamental object in mathematics, in some sense a 2-dimensional analogue of Brownian motion. Here we briefly explain this object and a bit of its history.
Motivated by its relevance for the study of perturbations of one-dimensional voter models, including stochastic Potts models at low temperature, we consider diffusively rescaled coalescing random walks with branching and killing. Our main result is convergence to a new continuum process, in which the random space-time paths of the Sun-Swart Brownian net are terminated at a Poisson cloud of killing points. We also prove existence of a percolation transition as the killing rate varies. Key issues for convergence are the relations of the discrete model killing points and their Poisson intensity measure to the continuum counterparts.
The perturbed GUE corners ensemble is the joint distribution of eigenvalues of all principal submatrices of a matrix $G+mathrm{diag}(mathbf{a})$, where $G$ is the random matrix from the Gaussian Unitary Ensemble (GUE), and $mathrm{diag}(mathbf{a})$ is a fixed diagonal matrix. We introduce Markov transitions based on exponential jumps of eigenvalues, and show that their successive application is equivalent in distribution to a deterministic shift of the matrix. This result also leads to a new distributional symmetry for a family of reflected Brownian motions with drifts coming from an arithmetic progression. The construction we present may be viewed as a random matrix analogue of the recent results of the first author and Axel Saenz (arXiv:1907.09155 [math.PR]).
We prove central and non-central limit theorems for the Hermite variations of the anisotropic fractional Brownian sheet $W^{alpha, beta}$ with Hurst parameter $(alpha, beta) in (0,1)^2$. When $0<alpha leq 1-frac{1}{2q}$ or $0<beta leq 1-frac{1}{2q}$ a central limit theorem holds for the renormalized Hermite variations of order $qgeq 2$, while for $1-frac{1}{2q}<alpha, beta < 1$ we prove that these variations satisfy a non-central limit theorem. In fact, they converge to a random variable which is the value of a two-parameter Hermite process at time $(1,1)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا