Do you want to publish a course? Click here

Hermite variations of the fractional Brownian sheet

286   0   0.0 ( 0 )
 Added by Michael Stauch
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We prove central and non-central limit theorems for the Hermite variations of the anisotropic fractional Brownian sheet $W^{alpha, beta}$ with Hurst parameter $(alpha, beta) in (0,1)^2$. When $0<alpha leq 1-frac{1}{2q}$ or $0<beta leq 1-frac{1}{2q}$ a central limit theorem holds for the renormalized Hermite variations of order $qgeq 2$, while for $1-frac{1}{2q}<alpha, beta < 1$ we prove that these variations satisfy a non-central limit theorem. In fact, they converge to a random variable which is the value of a two-parameter Hermite process at time $(1,1)$.



rate research

Read More

Let $qgeq 2$ be a positive integer, $B$ be a fractional Brownian motion with Hurst index $Hin(0,1)$, $Z$ be an Hermite random variable of index $q$, and $H_q$ denote the Hermite polynomial having degree $q$. For any $ngeq 1$, set $V_n=sum_{k=0}^{n-1} H_q(B_{k+1}-B_k)$. The aim of the current paper is to derive, in the case when the Hurst index verifies $H>1-1/(2q)$, an upper bound for the total variation distance between the laws $mathscr{L}(Z_n)$ and $mathscr{L}(Z)$, where $Z_n$ stands for the correct renormalization of $V_n$ which converges in distribution towards $Z$. Our results should be compared with those obtained recently by Nourdin and Peccati (2007) in the case when $H<1-1/(2q)$, corresponding to the situation where one has normal approximation.
We derive a system of stochastic partial differential equations satisfied by the eigenvalues of the symmetric matrix whose entries are the Brownian sheets. We prove that the sequence $left{L_{d}(s,t), (s,t)in[0,S]times [0,T]right}_{dinmathbb N}$ of empirical spectral measures of the rescaled matrices is tight on $C([0,S]times [0,T], mathcal P(mathbb R))$ and hence is convergent as $d$ goes to infinity by Wigners semicircle law. We also obtain PDEs which are satisfied by the high-dimensional limiting measure.
223 - Anthony Reveillac 2008
In this paper we state and prove a central limit theorem for the finite-dimensional laws of the quadratic variations process of certain fractional Brownian sheets. The main tool of this article is a method developed by Nourdin and Nualart based on the Malliavin calculus.
We derive the asymptotic behavior of weighted quadratic variations of fractional Brownian motion $B$ with Hurst index $H=1/4$. This completes the only missing case in a very recent work by I. Nourdin, D. Nualart and C. A. Tudor. Moreover, as an application, we solve a recent conjecture of K. Burdzy and J. Swanson on the asymptotic behavior of the Riemann sums with alternating signs associated to $B$.
Nils Tongring (1987) proved sufficient conditions for a compact set to contain $k$-tuple points of a Brownian motion. In this paper, we extend these findings to the fractional Brownian motion. Using the property of strong local nondeterminism, we show that if $B$ is a fractional Brownian motion in $mathbb{R}^d$ with Hurst index $H$ such that $Hd=1$, and $E$ is a fixed, nonempty compact set in $mathbb{R}^d$ with positive capacity with respect to the function $phi(s) = (log_+(1/s))^k$, then $E$ contains $k$-tuple points with positive probability. For the $Hd > 1$ case, the same result holds with the function replaced by $phi(s) = s^{-k(d-1/H)}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا