Do you want to publish a course? Click here

Magnetic-field-induced suppression of spin Peltier effect in Pt/${rm Y_{3}Fe_{5}O_{12}}$ system at room temperature

173   0   0.0 ( 0 )
 Added by Ryo Iguchi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the observation of magnetic-field-induced suppression of the spin Peltier effect (SPE) in a junction of a paramagnetic metal Pt and a ferrimagnetic insulator ${rm Y_{3}Fe_{5}O_{12}}$ (YIG) at room temperature. For driving the SPE, spin currents are generated via the spin Hall effect from applied charge currents in the Pt layer, and injected into the adjacent thick YIG film. The resultant temperature modulation is detected by a commonly-used thermocouple attached to the Pt/YIG junction. The output of the thermocouple shows sign reversal when the magnetization is reversed and linearly increases with the applied current, demonstrating the detection of the SPE signal. We found that the SPE signal decreases with the magnetic field. The observed suppression rate was found to be comparable to that of the spin Seebeck effect (SSE), suggesting the dominant and similar contribution of the low-energy magnons in the SPE as in the SSE.



rate research

Read More

The magnetic state of heavy metal Pt thin films in proximity to the ferrimagnetic insulator Y$_{3}$Fe$_{5}$O$_{12}$ has been investigated systematically by means of x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity measurements combined with angle-dependent magnetotransport studies. To reveal intermixing effects as the possible cause for induced magnetic moments in Pt, we compare thin film heterostructures with different order of the layer stacking and different interface properties. For standard Pt layers on Y$_{3}$Fe$_{5}$O$_{12}$ thin films, we do not detect any static magnetic polarization in Pt. These samples show an angle-dependent magnetoresistance behavior, which is consistent with the established spin Hall magnetoresistance. In contrast, for the inverted layer sequence, Y$_{3}$Fe$_{5}$O$_{12}$ thin films grown on Pt layers, Pt displays a finite induced magnetic moment comparable to that of all-metallic Pt/Fe bilayers. This magnetic moment is found to originate from finite intermixing at the Y$_{3}$Fe$_{5}$O$_{12}$/Pt interface. As a consequence, we found a complex angle-dependent magnetoresistance indicating a superposition of the spin Hall and the anisotropic magnetoresistance in these type of samples. Both effects can be disentangled from each other due to their different angle dependence and their characteristic temperature evolution.
Bismuth ferrite, BiFeO3, is the only known room-temperature multiferroic material. We demonstrate here, using neutron scattering measurements in high quality single crystals, that the antiferromagnetic and ferroelectric orders are intimately coupled. Initially in a single ferroelectric state, our crystals have a canted antiferromagnetic structure describing a unique cycloid. Under electrical poling, polarisation re-orientation induces a spin flop. We argue here that the coupling between the two orders may be stronger in the bulk than that observed in thin films where the cycloid is absent.
Recent research has indicated that introducing impurities that increase the resistivity of Pt can enhance the efficiency of the spin Hall torque it generates. Here we directly demonstrate the usefulness of this strategy by fabricating prototype 3-terminal in-plane-magnetized magnetic tunnel junctions that utilize the spin Hall torque from a $rm{Pt}_{85}rm{Hf}_{15}$ alloy, and measuring the critical currents for switching. We find that $rm{Pt}_{85}rm{Hf}_{15}$ reduces the switching current densities compared to pure Pt by approximately a factor of 2 for both quasi-static ramped current biases and nanosecond-scale current pulses, thereby proving the feasibility of this approach to assist in the development of efficient embedded magnetic memory technologies.
We study spin pumping in a $mathrm{Y_3Fe_5O_{12}(YIG)/Pt/Ni_{81}Fe_{19}(Py)}$ trilayer film by means of the inverse spin Hall effect (ISHE). When the ferromagnets are not excited simultaneously by a microwave, ISHE-induced voltage is of the opposite sign at each ferromagnetic resonance (FMR). The opposite sign is consistent with spin pumping of bilayer films. On the other hand, the voltage is of the same sign at each FMR when both the ferromagnets are excited simultaneously. Futhermore, the voltage greatly increases in magnitude. The observed voltage is unconventional; neither its sign nor magnitude can be expected from spin pumping of bilayer films. Control experiments show that the unconventional voltage is dominantly induced by spin pumping at the Py/Pt interface. Interaction between YIG and Py layers is a possible origin of the unconventional voltage.
We report the nonlocal spin Seebeck effect (nlSSE) in a lateral configuration of Pt/Y$_3$Fe$_5$O$_{12}$(YIG)/Pt systems as a function of the magnetic field $B$ (up to 10 T) at various temperatures $T$ (3 K < $T$ < 300 K). The nlSSE voltage decreases with increasing $B$ in a linear regime with respect to the input power (the applied charge-current squared $I^2$). The reduction of the nlSSE becomes substantial when the Zeeman energy exceeds thermal energy at low temperatures, which can be interpreted as freeze-out of magnons relevant for the nlSSE. Furthermore, we found the non-linear power dependence of the nlSSE with increasing $I$ at low temperatures ($T$ < 20 K), at which the $B$-induced signal reduction becomes less visible. Our experimental results suggest that in the non-linear regime high-energy magnons are over populated than those expected from the thermal energy. We also estimate the magnon spin diffusion length as functions of $B$ and $T$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا