Do you want to publish a course? Click here

Nuclear Activity and the Conditions of Star-formation at the Galactic Center

86   0   0.0 ( 0 )
 Added by Andreas Eckart
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Galactic Center is the closest galactic nucleus that can be studied with unprecedented angular resolution and sensitivity. We summarize recent basic observational results on Sagittarius A* and the conditions for star formation in the central stellar cluster. We cover results from the radio, infrared, and X-ray domain and include results from simulation as well. From (sub-)mm and near-infrared variability and near-infrared polarization data we find that the SgrA* system (supermassive black hole spin, a potential temporary accretion disk and/or outflow) is well ordered in its geometrical orientation and in its emission process that we assume to reflect the accretion process onto the supermassive black hole (SMBH).



rate research

Read More

164 - Jens Kauffmann 2016
Research on Galactic Center star formation is making great advances, in particular due to new data from interferometers spatially resolving molecular clouds in this environment. These new results are discussed in the context of established knowledge about the Galactic Center. Particular attention is paid to suppressed star formation in the Galactic Center and how it might result from shallow density gradients in molecular clouds.
145 - Jens Kauffmann 2017
A brief overview of recent advances in the study of star formation in the Galactic Center (GC) environment is presented. Particular attention is paid to new insights concerning the suppression of star formation in GC molecular clouds. Another focus is the question whether the GC can be used as a template for the understanding of starburst galaxies in the nearby and distant universe: this must be done with care. Some of the particular conditions in the center of the Milky Way do not necessarily play a role in starburst galaxies.
The Galactic Center is an excellent laboratory for studying phenomena and physical processes that may be occurring in many other galactic nuclei. The Center of our Milky Way is by far the closest galactic nucleus, and observations with exquisite resolution and sensitivity cover 18 orders of magnitude in energy of electromagnetic radiation. Theoretical simulations have become increasingly more powerful in explaining these measurements. This review summarizes the recent progress in observational and theoretical work on the central parsec, with a strong emphasis on the current empirical evidence for a central massive black hole and on the processes in the surrounding dense nuclear star cluster. We present the current evidence, from the analysis of the orbits of more than two dozen stars and from the measurements of the size and motion of the central compact radio source, Sgr A*, that this radio source must be a massive black hole of about 4.4 times 1e6 Msun, beyond any reasonable doubt. We report what is known about the structure and evolution of the dense nuclear star cluster surrounding this black hole, including the astounding fact that stars have been forming in the vicinity of Sgr A* recently, apparently with a top-heavy stellar mass function. We discuss a dense concentration of fainter stars centered in the immediate vicinity of the massive black hole, three of which have orbital peri-bothroi of less than one light day. This S-star cluster appears to consist mainly of young early-type stars, in contrast to the predicted properties of an equilibrium stellar cusp around a black hole. This constitutes a remarkable and presently not fully understood paradox of youth. We also summarize what is known about the emission properties of the accreting gas onto Sgr A* and how this emission is beginning to delineate the physical properties in the hot accretion zone around the event horizon.
We present new maps of emission-line flux distributions and kinematics in both ionized (traced by HI and [FeII] lines) and molecular (H2) gas of the inner 0.7x0.7kpc2 of the galaxy NGC4303, with a spatial resolution 40-80pc and velocity resolution 90-150 km/s obtained from near-IR integral field specroscopy using the VLT instrument SINFONI. The most promiment feature is a 200-250pc ring of circum-nuclear star-forming regions. The emission from ionized and molecular gas shows distinct flux distributions: while the strongest HI and [FeII] emission comes from regions in the west side of the ring (ages~4Myr), the H2 emission is strongest at the nucleus and in the east side of the ring (ages>10Myr). We find that regions of enhanced hot H2 emission are anti-correlated with those of enhanced [FeII] and HI emission, which can be attributed to post starburst regions that do not have ionizing photons anymore but still are hot enough (~2000K) to excite the H2 molecule. The line ratios are consistent with the presence of an AGN at the nucleus. The youngest regions have stellar masses in the range 0.3-1.5E5 MSun and ionized and hot molecular gas masses of ~0.25-1.2E4 Msun and 2.5-5 Msun, respectively. The stellar and gas velocity fields show a rotation pattern, with the gas presenting larger velocity amplitudes than the stars, with a deviation observed for the H2 along the nuclear bar, where increased velocity dispersion is also observed, possibly associated with non circular motions along the bar. The stars in the ring show smaller velocity dispersion than the surroundings, that can be attributed to a cooler dynamics due to their recent formation from cool gas.
We report ALMA observations with resolution $approx0.5$ at 3 mm of the extended Sgr B2 cloud in the Central Molecular Zone (CMZ). We detect 271 compact sources, most of which are smaller than 5000 AU. By ruling out alternative possibilities, we conclude that these sources consist of a mix of hypercompact HII regions and young stellar objects (YSOs). Most of the newly-detected sources are YSOs with gas envelopes which, based on their luminosities, must contain objects with stellar masses $M_*gtrsim8$ M$_odot$. Their spatial distribution spread over a $sim12times3$ pc region demonstrates that Sgr B2 is experiencing an extended star formation event, not just an isolated `starburst within the protocluster regions. Using this new sample, we examine star formation thresholds and surface density relations in Sgr B2. While all of the YSOs reside in regions of high column density ($N(H_2)gtrsim2times10^{23}$ cm$^{-2}$), not all regions of high column density contain YSOs. The observed column density threshold for star formation is substantially higher than that in solar vicinity clouds, implying either that high-mass star formation requires a higher column density or that any star formation threshold in the CMZ must be higher than in nearby clouds. The relation between the surface density of gas and stars is incompatible with extrapolations from local clouds, and instead stellar densities in Sgr B2 follow a linear $Sigma_*-Sigma_{gas}$ relation, shallower than that observed in local clouds. Together, these points suggest that a higher volume density threshold is required to explain star formation in CMZ clouds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا