No Arabic abstract
A method is described for the detection and estimation of transient chirp signals that are characterized by smoothly evolving, but otherwise unmodeled, amplitude envelopes and instantaneous frequencies. Such signals are particularly relevant for gravitational wave searches, where they may arise in a wide range of astrophysical scenarios. The method uses splines with continuously adjustable breakpoints to represent the amplitude envelope and instantaneous frequency of a signal, and estimates them from noisy data using penalized least squares and model selection. Simulations based on waveforms spanning a wide morphological range show that the method performs well in a signal-to-noise ratio regime where the time-frequency signature of a signal is highly degraded, thereby extending the coverage of current unmodeled gravitational wave searches to a wider class of signals.
We present a null-stream-based Bayesian unmodeled framework to probe generic gravitational-wave polarizations. Generic metric theories allow six gravitational-wave polarization states, but general relativity only permits the existence of two of them namely the tensorial polarizations. The strain signal measured by an interferometer is a linear combination of the polarization modes and such a linear combination depends on the geometry of the detector and the source location. The detector network of Advanced LIGO and Advanced Virgo allows us to measure different linear combinations of the polarization modes and therefore we can constrain the polarization content by analyzing how the polarization modes are linearly combined. We propose the basis formulation to construct a null stream along the polarization basis modes without requiring modeling the basis explicitly. We conduct a mock data study and we show that the framework is capable of probing pure and mixed polarizations in the Advanced LIGO-Advanced Virgo 3-detector network without knowing the sky location of the source from electromagnetic counterparts. We also discuss the effect of the presence of the uncaptured orthogonal polarization component in the framework, and we propose using the plug-in method to test the existence of the orthogonal polarizations.
Gravitational waves are radiative solutions of space-time dynamics predicted by Einsteins theory of General Relativity. A world-wide array of large-scale and highly sensitive interferometric detectors constantly scrutinizes the geometry of the local space-time with the hope to detect deviations that would signal an impinging gravitational wave from a remote astrophysical source. Finding the rare and weak signature of gravitational waves buried in non-stationary and non-Gaussian instrument noise is a particularly challenging problem. We will give an overview of the data-analysis techniques and associated observational results obtained so far by Virgo (in Europe) and LIGO (in the US), along with the prospects offered by the up-coming advance
Rapid, accurate localization of gravitational wave transient events has proved critical to successful electromagnetic followup. In previous papers we have shown that localization estimates can be obtained through triangulation based on timing information at the detector sites. In practice, detailed parameter estimation routines use additional information and provide better localization than is possible based on timing information alone. In this paper, we extend the timing based localization approximation to incorporate consistency of observed signals with two gravitational wave polarizations, and an astrophysically motivated distribution of sources. Both of these provide significant improvements to source localization, allowing many sources to be restricted to a single sky region, with an area 40% smaller than predicted by timing information alone. Furthermore, we show that the vast majority of sources will be reconstructed to be circularly polarized or, equivalently, indistinguishable from face-on.
coherent WaveBurst (cWB) is a highly configurable pipeline designed to detect a broad range of gravitational-wave (GW) transients in the data of the worldwide network of GW detectors. The algorithmic core of cWB is a time-frequency analysis with the Wilson-Daubechies-Meyer wavelets aimed at the identification of GW events without prior knowledge of the signal waveform. cWB has been in active development since 2003 and it has been used to analyze all scientific data collected by the LIGO-Virgo detectors ever since. On September 14, 2015, the cWB low-latency search detected the first gravitational-wave event, GW150914, a merger of two black holes. In 2019, a public open-source version of cWB has been released with GPLv3 license.
Interferometric detectors will very soon give us an unprecedented view of the gravitational-wave sky, and in particular of the explosive and transient Universe. Now is the time to challenge our theoretical understanding of short-duration gravitational-wave signatures from cataclysmic events, their connection to more traditional electromagnetic and particle astrophysics, and the data analysis techniques that will make the observations a reality. This paper summarizes the state of the art, future science opportunities, and current challenges in understanding gravitational-wave transients.