Do you want to publish a course? Click here

A new 3D Calorimetry of hot nuclei

115   0   0.0 ( 0 )
 Added by Emmanuel Vient
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the domain of Fermi energy, it is extremely complex to isolate experimentally fragments and particles issued from the cooling of a hot nucleus produced during a heavy ion collision. This paper presents a new method to characterize more precisely hot Quasi-Projectiles. It tries to take into account as accurately as possible the distortions generated by all the other potential participants in the nuclear reaction. It is quantitatively shown that this method is a major improvement respect to classic calorimetries used with a 4$pi$ detector array. By detailing and deconvolving the different steps of the reconstitution of the hot nucleus, this study shows also the respective role played by the experimental device and the event selection criteria on the quality of the determination of QP characteristics.



rate research

Read More

69 - Niseem Magdy 2017
A charge-sensitive in-event correlator is proposed and tested for its efficacy to detect and characterize charge separation associated with the Chiral Magnetic Effect (CME) in heavy ion collisions. Tests, performed with the aid of two reaction models, indicate discernible responses for background- and CME-driven charge separation, relative to the second- ($Psi_{2}$) and third-order ($Psi_{3}$) event planes, which could serve to identify the CME. The tests also indicate a degree of sensitivity which would enable robust characterization of the CME via Anomalous Viscous Fluid Dynamics (AVFD) model comparisons.
A new data analysis method is developed for the angle resolving silicon telescope introduced at the neutron time of flight facility n_TOF at CERN. The telescope has already been used in measurements of several neutron induced reactions with charged particles in the exit channel. The development of a highly detailed method is necessitated by the latest joint measurement of the $^{12}$C($n,p$) and $^{12}$C($n,d$) reactions from n_TOF. The reliable analysis of these data must account for the challenging nature of the involved reactions, as they are affected by the multiple excited states in the daughter nuclei and characterized by the anisotropic angular distributions of the reaction products. The unabridged analysis procedure aims at the separate reconstruction of all relevant reaction parameters - the absolute cross section, the branching ratios and the angular distributions - from the integral number of the coincidental counts detected by the separate pairs of silicon strips. This procedure is tested under the specific conditions relevant for the $^{12}$C($n,p$) and $^{12}$C($n,d$) measurements from n_TOF, in order to assess its direct applicability to these experimental data. Based on the reached conclusions, the original method is adapted to a particular level of uncertainties in the input data.
71 - R.A. Soltz 2020
This article presents the motivation for developing a comprehensive modeling framework in which different models and parameter inputs can be compared and evaluated for a large range of jet-quenching observables measured in relativistic heavy-ion collisions at RHIC and the LHC. The concept of a framework us discussed within the context of recent efforts by the JET Collaboration, the authors of JEWEL, and the JETSCAPE collaborations. The framework ingredients for each of these approaches is presented with a sample of important results from each. The role of advanced statistical tools in comparing models to data is also discussed, along with the need for a more detailed accounting of correlated errors in experimental results.
We describe likelihood-based statistical tests for use in high energy physics for the discovery of new phenomena and for construction of confidence intervals on model parameters. We focus on the properties of the test procedures that allow one to account for systematic uncertainties. Explicit formulae for the asymptotic distributions of test statistics are derived using results of Wilks and Wald. We motivate and justify the use of a representative data set, called the Asimov data set, which provides a simple method to obtain the median experimental sensitivity of a search or measurement as well as fluctuations about this expectation.
127 - Pierre Thibault 2009
We comment on the recent manuscript by Raines et al. [arXiv:0905.0269v2] (now published in Nature, vol. 463, p. 214-217, 2010), which suggests that in certain conditions a single diffraction measurement may be sufficient to reconstruct the full three-dimensional density of a scatterer. We show that past literature contains the tools to assess rigorously the feasibility of this approach. We question the formulation of the reconstruction algorithm used by the authors and we argue that the experimental data used as a demonstration is not suitable for this method, and thus that the reconstruction is not valid. This second version was produced for documentation purposes. In addition to the minimally modified original comment, it includes in appendix a subsequent reply to one of the authors (J. Miao).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا