Do you want to publish a course? Click here

Measuring black hole mass of type I active galactic nuclei by spectropolarimetry

66   0   0.0 ( 0 )
 Added by Jian-Min Wang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Black hole (BH) mass of Type I active galactic nuclei (AGN) can be measured or estimated through either reverberation mapping (RM) or empirical $R-L$ relation, however, both of them suffer from uncertainties of the virial factor ($f_{rm BLR}$), thus limiting the measurement accuracy. In this letter, we make an effort to investigate $f_{rm BLR}$ through polarised spectra of the broad-line regions (BLR) arisen from electrons in the equatorial plane. Given the BLR composed of discrete clouds with Keplerian velocity around the central BH, we simulate a large number of spectra of total and polarised flux with wide ranges of parameters of the BLR model and equatorial scatters. We find that the $f_{rm BLR}$-distribution of polarised spectra is much narrower than that of total ones. This provides a way of n accurately estimating BH mass from single spectropolarimetric observations of type I AGN whose equatorial scatters are identified.



rate research

Read More

190 - Laura Brenneman 2013
Measuring the spins of supermassive black holes (SMBHs) in active galactic nuclei (AGN) can inform us about the relative role of gas accretion vs. mergers in recent epochs of the life of the host galaxy and its AGN. Recent advances in theory and observation have enabled spin measurements for a handful of SMBHs thus far, but this science is still very much in its infancy. Herein, I discuss how and why we seek to measure black hole spin in AGN, using recent results from long X-ray observing campaigns on three radio-quiet AGN (MCG-6-30-15, NGC 3783 and Fairall 9) to illustrate this process and its caveats. I then present our current knowledge of the distribution of SMBH spins in the local universe. I also address prospects for improving the accuracy, precision and quantity of these spin constraints in the next decade and beyond with instruments such as NuSTAR, Astro-H and a future generation large-area X-ray telescope.
Using different kinds of velocity tracers derived from the broad H$beta$ profile (in the mean or rms spectrum) and the corresponding virial factors $f$, the central supermassive black hole (SMBH) masses ($M_{rm BH}$) are calculated for a compiled sample of 120 reverberation-mapped (RM) AGNs. For its subsample of RM AGNs with measured stellar velocity dispersion ($sigma_{rm ast}$), the multivariate linear regression technique is used to calibrate the mean value $f$, as well as the variable FWHM-based $f$. It is found that, whether excluding the pseudo-bulges or not, $M_{rm BH}$ from the H$beta$ line dispersion in the mean spectrum ($sigma_{rm Hbeta,mean}$) has the smallest offset rms with respect to the $M_{rm BH}-sigma_{ast}$ relation. For the total sample excluding SDSS-RM AGNs, with respect to $M_{rm BH}$ from $sigma_{rm ast}$ or that from the H$beta$ line dispersion in the rms spectrum ($sigma_{rm Hbeta,rms}$), it is found that we can obtain $M_{rm BH}$ from the $sigma_{rm Hbeta,mean}$ with the smallest offset rms of 0.38 dex or 0.23 dex, respectively. It implies that, with respect to the H$beta$ FWHM, we prefer $sigma_{rm Hbeta,mean}$ to calculate $M_{rm BH}$ from the single-epoch spectrum. Using the FWHM-based $f$, we can improve $M_{rm BH}$ calculation from FWHM(H$beta$) and the mean $f$, with a decreased offset rms from 0.52 dex to 0.39 dex with respect to $M_{rm BH}$ from $sigma_{rm ast}$ for the subsample of 36 AGNs with $sigma_{rm ast}$. The value of 0.39 dex is almost the same as that from $sigma_{rm Hbeta,mean}$ and the mean $f$.
The astrophysical origin of gravitational wave (GW) transients is a timely open question in the wake of discoveries by LIGO/Virgo. In active galactic nuclei (AGNs), binaries form and evolve efficiently by interaction with a dense population of stars and the gaseous AGN disk. Previous studies have shown that stellar-mass black hole (BH) mergers in such environments can explain the merger rate and the number of suspected hierarchical mergers observed by LIGO/Virgo. The binary eccentricity distribution can provide further information to distinguish between astrophysical models. Here we derive the eccentricity distribution of BH mergers in AGN disks. We find that eccentricity is mainly due to binary-single (BS) interactions, which lead to most BH mergers in AGN disks having a significant eccentricity at $0.01,mathrm{Hz}$, detectable by LISA. If BS interactions occur in isotropic-3D directions, then $8$--$30%$ of the mergers in AGN disks will have eccentricities at $10,mathrm{Hz}$ above $e_{10,rm Hz}gtrsim 0.03$, detectable by LIGO/Virgo/KAGRA, while $5$--$17%$ of mergers have $e_{10,rm Hz}geq 0.3$. On the other hand, if BS interactions are confined to the AGN-disk plane due to torques from the disk, with 1-20 intermediate binary states during each interaction, or if BHs can migrate to $lesssim10^{-3},mathrm{pc}$ from the central supermassive black hole, then $10$--$70%$ of the mergers will be highly eccentric ($e_{10,rm Hz} geq 0.3$), consistent with the possible high eccentricity in GW190521.
The mass-metallicity relation (MZR) of type-2 active galactic nuclei (AGNs) at 1.2 < z < 4.0 is investigated by using high-z radio galaxies (HzRGs) and X-ray selected radio-quiet AGNs. We combine new rest-frame ultraviolet (UV) spectra of two radio-quiet type-2 AGNs obtained with FOCAS on the Subaru Telescope with existing rest-frame UV emission lines, i.e., CIV1549, HeII1640, and CIII]1909, of a sample of 16 HzRGs and 6 additional X-ray selected type-2 AGNs, whose host stellar masses have been estimated in literature. We divided our sample in three stellar mass bins and calculated averaged emission-line flux ratios of CIV1549/HeII1640 and CIII]1909/CIV1549. Comparing observed emission-line flux ratios with photoionization model predictions, we estimated narrow line region (NLR) metallicities for each mass bin. We found that there is a positive correlation between NLR metallicities and stellar masses of type-2 AGNs at z ~ 3. This is the first indication that AGN metallicities are related to their hosts, i.e., stellar mass. Since NLR metallicities and stellar masses follow a similar relation as the MZR in star-forming galaxies at similar redshifts, our results indicate that NLR metallicities are related to those of the host galaxies. This study highlights the importance of considering lower-mass X-ray selected AGNs in addition to radio galaxies to explore the metallicity properties of NLRs at high redshift.
We present 2.5-5.0 $mu$m spectra of 83 nearby ($0.002,<,z,<,0.48$) and bright ($K<14$mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera (IRC) on board $it{AKARI}$. The 2.5-5.0 $mu$m spectral region contains emission lines such as Br$beta$ (2.63 $mu$m), Br$alpha$ (4.05 $mu$m), and polycyclic aromatic hydrocarbons (PAH; 3.3 $mu$m), which can be used for studying the black hole (BH) masses and star formation activities in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green (PG) and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. (2004). Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region (BLR). Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, $it{WISE}$, and $it{ISO}$ to the $it{AKARI}$ spectra, finding hot and warm dust temperatures of $sim1100,rm{K}$ and $sim220,rm{K}$, respectively, rather than the commonly cited hot dust temperature of 1500 K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا