We examine initial-boundary value problems for diffusion equations with distributed order time-fractional derivatives. We prove existence and uniqueness results for the weak solution to these systems, together with its continuous dependency on initial value and source term. Moreover, under suitable assumption on the source term, we establish that the solution is analytic in time.
We study the well-posedness for initial boundary value problems associated with time fractional diffusion equations with non-homogenous boundary and initial values. We consider both weak and strong solutions for the problems. For weak solutions, we introduce a new definition of solutions which allows to prove the existence of solution to the initial boundary value problems with non-zero initial and boundary values and non-homogeneous terms lying in some arbitrary negative-order Sobolev spaces. For strong solutions, we introduce an optimal compatibility condition and prove the existence of the solutions. We introduce also some sharp conditions guaranteeing the existence of solutions with more regularity in time and space.
Given $(M,g)$, a compact connected Riemannian manifold of dimension $d geq 2$, with boundary $partial M$, we consider an initial boundary value problem for a fractional diffusion equation on $(0,T) times M$, $T>0$, with time-fractional Caputo derivative of order $alpha in (0,1) cup (1,2)$. We prove uniqueness in the inverse problem of determining the smooth manifold $(M,g)$ (up to an isometry), and various time-independent smooth coefficients appearing in this equation, from measurements of the solution on a subset of $partial M$ at fixed time. In the flat case where $M$ is a compact subset of $mathbb R^d$, two out the three coefficients $rho$ (weight), $a$ (conductivity) and $q$ (potential) appearing in the equation $rho partial_t^alpha u-textrm{div}(a abla u)+ q u=0$ on $(0,T)times Omega$ are recovered simultaneously.
In this paper we investigate the solution of generalized distributed order diffusion equations with composite time fractional derivative by using the Fourier-Laplace transform method. We represent solutions in terms of infinite series in Fox $H$-functions. The fractional and second moments are derived by using Mittag-Leffler functions. We observe decelerating anomalous subdiffusion in case of two composite time fractional derivatives. Generalized uniformly distributed order diffusion equation, as a model for strong anomalous behavior, is analyzed by using Tauberian theorem. Some previously obtained results are special cases of those presented in this paper.
We investigate diffusion equations with time-fractional derivatives of space-dependent variable order. We examine the well-posedness issue and prove that the space-dependent variable order coefficient is uniquely determined among other coefficients of these equations, by the knowledge of a suitable time-sequence of partial Dirichlet-to-Neumann maps.
In this paper, an Artificial Neural Network (ANN) technique is developed to find solution of celebrated Fractional order Differential Equations (FDE). Compared to integer order differential equation, FDE has the advantage that it can better describe sometimes various real world application problems of physical systems. Here we have employed multi-layer feed forward neural architecture and error back propagation algorithm with unsupervised learning for minimizing the error function and modification of the parameters (weights and biases). Combining the initial conditions with the ANN output gives us a suitable approximate solution of FDE. To prove the applicability of the concept, some illustrative examples are provided to demonstrate the precision and effectiveness of this method. Comparison of the present results with other available results by traditional methods shows a close match which establishes its correctness and accuracy of this method.
Zhiyuan Li
,Yavar Kian
,Eric Soccorsi
.
(2017)
.
"Initial-boundary value problem for distributed order time-fractional diffusion equations"
.
Yavar Kian
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا