Do you want to publish a course? Click here

A blueprint for demonstrating quantum supremacy with superconducting qubits

109   0   0.0 ( 0 )
 Added by Charles Neill
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fundamental questions in chemistry and physics may never be answered due to the exponential complexity of the underlying quantum phenomena. A desire to overcome this challenge has sparked a new industry of quantum technologies with the promise that engineered quantum systems can address these hard problems. A key step towards demonstrating such a system will be performing a computation beyond the capabilities of any classical computer, achieving so-called quantum supremacy. Here, using 9 superconducting qubits, we demonstrate an immediate path towards quantum supremacy. By individually tuning the qubit parameters, we are able to generate thousands of unique Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert-space. As the number of qubits in the algorithm is varied, the system continues to explore the exponentially growing number of states. Combining these large datasets with techniques from machine learning allows us to construct a model which accurately predicts the measured probabilities. We demonstrate an application of these algorithms by systematically increasing the disorder and observing a transition from delocalized states to localized states. By extending these results to a system of 50 qubits, we hope to address scientific questions that are beyond the capabilities of any classical computer.



rate research

Read More

This is an updated version of supplementary information to accompany Quantum supremacy using a programmable superconducting processor, an article published in the October 24, 2019 issue of Nature. The main article is freely available at https://www.nature.com/articles/s41586-019-1666-5. Summary of changes since arXiv:1910.11333v1 (submitted 23 Oct 2019): added URL for qFlex source code; added Erratum section; added Figure S41 comparing statistical and total uncertainty for log and linear XEB; new References [1,65]; miscellaneous updates for clarity and style consistency; miscellaneous typographical and formatting corrections.
80 - Karl Svozil 2019
Even if Google AIs Sycamore processor is efficient for the particular task it has been designed for it fails to deliver universal computational capacity. Furthermore, even classical devices implementing transverse homoclinic orbits realize exponential speedups with respect to universal classical as well as quantum computations. Moreover, relative to the validity of quantum mechanics, there already exist quantum oracles which violate the Church-Turing thesis.
The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. Here we experimentally demonstrate a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.
142 - A. Dewes , R. Lauro , F.R. Ong 2011
We operate a superconducting quantum processor consisting of two tunable transmon qubits coupled by a swapping interaction, and equipped with non destructive single-shot readout of the two qubits. With this processor, we run the Grover search algorithm among four objects and find that the correct answer is retrieved after a single run with a success probability between 0.52 and 0.67, significantly larger than the 0.25 achieved with a classical algorithm. This constitutes a proof-of-concept for the quantum speed-up of electrical quantum processors.
We propose a quantum simulator based on driven superconducting qubits where the interactions are generated parametrically by a polychromatic magnetic flux modulation of a tunable bus element. Using a time-dependent Schrieffer-Wolff transformation, we analytically derive a multi-qubit Hamiltonian which features independently tunable $XX$ and $YY$-type interactions as well as local bias fields over a large parameter range. We demonstrate the adiabatic simulation of the ground state of a hydrogen molecule using two superconducting qubits and one tunable bus element. The time required to reach chemical accuracy lies in the few microsecond range and therefore could be implemented on currently available superconducting circuits. Further applications of this technique may also be found in the simulation of interacting spin systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا